MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad3 Structured version   Visualization version   GIF version

Theorem lgsquad3 25879
Description: Extend lgsquad2 25878 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
lgsquad3 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))

Proof of Theorem lgsquad3
StepHypRef Expression
1 simplrl 773 . . . . . . . . . 10 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
2 nnz 11996 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
31, 2syl 17 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
4 nnz 11996 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
54ad3antrrr 726 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
6 lgscl 25803 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 /L 𝑀) ∈ ℤ)
73, 5, 6syl2anc 584 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℤ)
87zred 12079 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℝ)
9 absresq 14655 . . . . . . 7 ((𝑁 /L 𝑀) ∈ ℝ → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2))
108, 9syl 17 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2))
11 gcdcom 15854 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
123, 5, 11syl2anc 584 . . . . . . . . . 10 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
13 simpr 485 . . . . . . . . . 10 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
1412, 13eqtrd 2860 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1)
15 lgsabs1 25828 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1))
163, 5, 15syl2anc 584 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1))
1714, 16mpbird 258 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (abs‘(𝑁 /L 𝑀)) = 1)
1817oveq1d 7166 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = (1↑2))
19 sq1 13551 . . . . . . 7 (1↑2) = 1
2018, 19syl6eq 2876 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = 1)
217zcnd 12080 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℂ)
2221sqvald 13500 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑁 /L 𝑀)↑2) = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))
2310, 20, 223eqtr3d 2868 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 1 = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))
2423oveq2d 7167 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))))
25 lgscl 25803 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 /L 𝑁) ∈ ℤ)
265, 3, 25syl2anc 584 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℤ)
2726zcnd 12080 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℂ)
2827, 21, 21mulassd 10656 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))))
2924, 28eqtr4d 2863 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)))
3027mulid1d 10650 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (𝑀 /L 𝑁))
31 simplll 771 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℕ)
32 simpllr 772 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀)
33 simplrr 774 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁)
3431, 32, 1, 33, 13lgsquad2 25878 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
3534oveq1d 7166 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
3629, 30, 353eqtr3d 2868 . 2 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
37 neg1cn 11743 . . . . . 6 -1 ∈ ℂ
3837a1i 11 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → -1 ∈ ℂ)
39 neg1ne0 11745 . . . . . 6 -1 ≠ 0
4039a1i 11 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → -1 ≠ 0)
414ad3antrrr 726 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
42 simpllr 772 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀)
43 1zzd 12005 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 1 ∈ ℤ)
44 2prm 16028 . . . . . . . . 9 2 ∈ ℙ
45 nprmdvds1 16042 . . . . . . . . 9 (2 ∈ ℙ → ¬ 2 ∥ 1)
4644, 45mp1i 13 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 1)
47 omoe 15705 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ ¬ 2 ∥ 𝑀) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑀 − 1))
4841, 42, 43, 46, 47syl22anc 836 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑀 − 1))
49 2z 12006 . . . . . . . 8 2 ∈ ℤ
50 2ne0 11733 . . . . . . . 8 2 ≠ 0
51 peano2zm 12017 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
5241, 51syl 17 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑀 − 1) ∈ ℤ)
53 dvdsval2 15602 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑀 − 1) ∈ ℤ) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈ ℤ))
5449, 50, 52, 53mp3an12i 1458 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈ ℤ))
5548, 54mpbid 233 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((𝑀 − 1) / 2) ∈ ℤ)
562adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℤ)
5756ad2antlr 723 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
58 simplrr 774 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁)
59 omoe 15705 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
6057, 58, 43, 46, 59syl22anc 836 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑁 − 1))
61 peano2zm 12017 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
6257, 61syl 17 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑁 − 1) ∈ ℤ)
63 dvdsval2 15602 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
6449, 50, 62, 63mp3an12i 1458 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
6560, 64mpbid 233 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((𝑁 − 1) / 2) ∈ ℤ)
6655, 65zmulcld 12085 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ)
6738, 40, 66expclzd 13508 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ∈ ℂ)
6867mul01d 10831 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0) = 0)
69 lgsne0 25827 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑁 gcd 𝑀) = 1))
7011eqeq1d 2827 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝑁) = 1))
7169, 70bitrd 280 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1))
722, 4, 71syl2anr 596 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1))
7372necon1bbid 3059 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0))
7473ad2ant2r 743 . . . . 5 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0))
7574biimpa 477 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) = 0)
7675oveq2d 7167 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0))
77 lgsne0 25827 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 /L 𝑁) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1))
7877necon1bbid 3059 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))
794, 2, 78syl2an 595 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))
8079ad2ant2r 743 . . . 4 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))
8180biimpa 477 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = 0)
8268, 76, 813eqtr4rd 2871 . 2 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
8336, 82pm2.61dan 809 1 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3020   class class class wbr 5062  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  1c1 10530   · cmul 10534  cmin 10862  -cneg 10863   / cdiv 11289  cn 11630  2c2 11684  cz 11973  cexp 13422  abscabs 14586  cdvds 15599   gcd cgcd 15835  cprime 16007   /L clgs 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-ec 8284  df-qs 8288  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-dvds 15600  df-gcd 15836  df-prm 16008  df-phi 16095  df-pc 16166  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-nsg 18209  df-eqg 18210  df-ghm 18288  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-cring 19222  df-oppr 19295  df-dvdsr 19313  df-unit 19314  df-invr 19344  df-dvr 19355  df-rnghom 19389  df-drng 19426  df-field 19427  df-subrg 19455  df-lmod 19558  df-lss 19626  df-lsp 19666  df-sra 19866  df-rgmod 19867  df-lidl 19868  df-rsp 19869  df-2idl 19926  df-nzr 19952  df-rlreg 19977  df-domn 19978  df-idom 19979  df-cnfld 20464  df-zring 20536  df-zrh 20569  df-zn 20572  df-lgs 25787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator