Proof of Theorem lgsquad3
Step | Hyp | Ref
| Expression |
1 | | simplrl 773 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) |
2 | | nnz 12272 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) |
4 | | nnz 12272 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
5 | 4 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ) |
6 | | lgscl 26364 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 /L 𝑀) ∈
ℤ) |
7 | 3, 5, 6 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℤ) |
8 | 7 | zred 12355 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℝ) |
9 | | absresq 14942 |
. . . . . . 7
⊢ ((𝑁 /L 𝑀) ∈ ℝ →
((abs‘(𝑁
/L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2)) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2)) |
11 | 3, 5 | gcdcomd 16149 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
12 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1) |
13 | 11, 12 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1) |
14 | | lgsabs1 26389 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
((abs‘(𝑁
/L 𝑀)) =
1 ↔ (𝑁 gcd 𝑀) = 1)) |
15 | 3, 5, 14 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1)) |
16 | 13, 15 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (abs‘(𝑁 /L 𝑀)) = 1) |
17 | 16 | oveq1d 7270 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = (1↑2)) |
18 | | sq1 13840 |
. . . . . . 7
⊢
(1↑2) = 1 |
19 | 17, 18 | eqtrdi 2795 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = 1) |
20 | 7 | zcnd 12356 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℂ) |
21 | 20 | sqvald 13789 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑁 /L 𝑀)↑2) = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))) |
22 | 10, 19, 21 | 3eqtr3d 2786 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 1 = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))) |
23 | 22 | oveq2d 7271 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))) |
24 | | lgscl 26364 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 /L 𝑁) ∈
ℤ) |
25 | 5, 3, 24 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℤ) |
26 | 25 | zcnd 12356 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℂ) |
27 | 26, 20, 20 | mulassd 10929 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))) |
28 | 23, 27 | eqtr4d 2781 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀))) |
29 | 26 | mulid1d 10923 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (𝑀 /L 𝑁)) |
30 | | simplll 771 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℕ) |
31 | | simpllr 772 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀) |
32 | | simplrr 774 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁) |
33 | 30, 31, 1, 32, 12 | lgsquad2 26439 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) /
2)))) |
34 | 33 | oveq1d 7270 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) |
35 | 28, 29, 34 | 3eqtr3d 2786 |
. 2
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) |
36 | | neg1cn 12017 |
. . . . . 6
⊢ -1 ∈
ℂ |
37 | 36 | a1i 11 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → -1 ∈
ℂ) |
38 | | neg1ne0 12019 |
. . . . . 6
⊢ -1 ≠
0 |
39 | 38 | a1i 11 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → -1 ≠ 0) |
40 | 4 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ) |
41 | | simpllr 772 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀) |
42 | | 1zzd 12281 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 1 ∈
ℤ) |
43 | | 2prm 16325 |
. . . . . . . . 9
⊢ 2 ∈
ℙ |
44 | | nprmdvds1 16339 |
. . . . . . . . 9
⊢ (2 ∈
ℙ → ¬ 2 ∥ 1) |
45 | 43, 44 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥
1) |
46 | | omoe 16001 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ ¬ 2
∥ 𝑀) ∧ (1 ∈
ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑀 − 1)) |
47 | 40, 41, 42, 45, 46 | syl22anc 835 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑀 − 1)) |
48 | | 2z 12282 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
49 | | 2ne0 12007 |
. . . . . . . 8
⊢ 2 ≠
0 |
50 | | peano2zm 12293 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) |
51 | 40, 50 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 − 1) ∈ ℤ) |
52 | | dvdsval2 15894 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 2 ≠ 0 ∧ (𝑀 − 1) ∈ ℤ) → (2
∥ (𝑀 − 1)
↔ ((𝑀 − 1) / 2)
∈ ℤ)) |
53 | 48, 49, 51, 52 | mp3an12i 1463 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈
ℤ)) |
54 | 47, 53 | mpbid 231 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((𝑀 − 1) / 2) ∈
ℤ) |
55 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁) → 𝑁 ∈
ℤ) |
56 | 55 | ad2antlr 723 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) |
57 | | simplrr 774 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁) |
58 | | omoe 16001 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁) ∧ (1 ∈
ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1)) |
59 | 56, 57, 42, 45, 58 | syl22anc 835 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑁 − 1)) |
60 | | peano2zm 12293 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
61 | 56, 60 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑁 − 1) ∈ ℤ) |
62 | | dvdsval2 15894 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2
∥ (𝑁 − 1)
↔ ((𝑁 − 1) / 2)
∈ ℤ)) |
63 | 48, 49, 61, 62 | mp3an12i 1463 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈
ℤ)) |
64 | 59, 63 | mpbid 231 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((𝑁 − 1) / 2) ∈
ℤ) |
65 | 54, 64 | zmulcld 12361 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) ∈
ℤ) |
66 | 37, 39, 65 | expclzd 13797 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ∈
ℂ) |
67 | 66 | mul01d 11104 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0) =
0) |
68 | | lgsne0 26388 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑁 gcd 𝑀) = 1)) |
69 | | gcdcom 16148 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
70 | 69 | eqeq1d 2740 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝑁) = 1)) |
71 | 68, 70 | bitrd 278 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) |
72 | 2, 4, 71 | syl2anr 596 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) |
73 | 72 | necon1bbid 2982 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0)) |
74 | 73 | ad2ant2r 743 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0)) |
75 | 74 | biimpa 476 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) = 0) |
76 | 75 | oveq2d 7271 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀)) = ((-1↑(((𝑀 − 1) / 2) ·
((𝑁 − 1) / 2)))
· 0)) |
77 | | lgsne0 26388 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 /L 𝑁) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) |
78 | 77 | necon1bbid 2982 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) |
79 | 4, 2, 78 | syl2an 595 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) |
80 | 79 | ad2ant2r 743 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) |
81 | 80 | biimpa 476 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = 0) |
82 | 67, 76, 81 | 3eqtr4rd 2789 |
. 2
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) |
83 | 35, 82 | pm2.61dan 809 |
1
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) ·
((𝑁 − 1) / 2)))
· (𝑁
/L 𝑀))) |