MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad3 Structured version   Visualization version   GIF version

Theorem lgsquad3 27350
Description: Extend lgsquad2 27349 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
lgsquad3 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))

Proof of Theorem lgsquad3
StepHypRef Expression
1 simplrl 776 . . . . . . . . . 10 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
2 nnz 12609 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
31, 2syl 17 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
4 nnz 12609 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
54ad3antrrr 730 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
6 lgscl 27274 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 /L 𝑀) ∈ ℤ)
73, 5, 6syl2anc 584 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℤ)
87zred 12697 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℝ)
9 absresq 15321 . . . . . . 7 ((𝑁 /L 𝑀) ∈ ℝ → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2))
108, 9syl 17 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2))
113, 5gcdcomd 16533 . . . . . . . . . 10 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
12 simpr 484 . . . . . . . . . 10 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
1311, 12eqtrd 2770 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1)
14 lgsabs1 27299 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1))
153, 5, 14syl2anc 584 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1))
1613, 15mpbird 257 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (abs‘(𝑁 /L 𝑀)) = 1)
1716oveq1d 7420 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = (1↑2))
18 sq1 14213 . . . . . . 7 (1↑2) = 1
1917, 18eqtrdi 2786 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = 1)
207zcnd 12698 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℂ)
2120sqvald 14161 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑁 /L 𝑀)↑2) = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))
2210, 19, 213eqtr3d 2778 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 1 = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))
2322oveq2d 7421 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))))
24 lgscl 27274 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 /L 𝑁) ∈ ℤ)
255, 3, 24syl2anc 584 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℤ)
2625zcnd 12698 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℂ)
2726, 20, 20mulassd 11258 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))))
2823, 27eqtr4d 2773 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)))
2926mulridd 11252 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (𝑀 /L 𝑁))
30 simplll 774 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℕ)
31 simpllr 775 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀)
32 simplrr 777 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁)
3330, 31, 1, 32, 12lgsquad2 27349 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
3433oveq1d 7420 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
3528, 29, 343eqtr3d 2778 . 2 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
36 neg1cn 12354 . . . . . 6 -1 ∈ ℂ
3736a1i 11 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → -1 ∈ ℂ)
38 neg1ne0 12356 . . . . . 6 -1 ≠ 0
3938a1i 11 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → -1 ≠ 0)
404ad3antrrr 730 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
41 simpllr 775 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀)
42 1zzd 12623 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 1 ∈ ℤ)
43 2prm 16711 . . . . . . . . 9 2 ∈ ℙ
44 nprmdvds1 16725 . . . . . . . . 9 (2 ∈ ℙ → ¬ 2 ∥ 1)
4543, 44mp1i 13 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 1)
46 omoe 16383 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ ¬ 2 ∥ 𝑀) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑀 − 1))
4740, 41, 42, 45, 46syl22anc 838 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑀 − 1))
48 2z 12624 . . . . . . . 8 2 ∈ ℤ
49 2ne0 12344 . . . . . . . 8 2 ≠ 0
50 peano2zm 12635 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
5140, 50syl 17 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑀 − 1) ∈ ℤ)
52 dvdsval2 16275 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑀 − 1) ∈ ℤ) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈ ℤ))
5348, 49, 51, 52mp3an12i 1467 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈ ℤ))
5447, 53mpbid 232 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((𝑀 − 1) / 2) ∈ ℤ)
552adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℤ)
5655ad2antlr 727 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
57 simplrr 777 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁)
58 omoe 16383 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
5956, 57, 42, 45, 58syl22anc 838 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑁 − 1))
60 peano2zm 12635 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
6156, 60syl 17 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑁 − 1) ∈ ℤ)
62 dvdsval2 16275 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
6348, 49, 61, 62mp3an12i 1467 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
6459, 63mpbid 232 . . . . . 6 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((𝑁 − 1) / 2) ∈ ℤ)
6554, 64zmulcld 12703 . . . . 5 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ)
6637, 39, 65expclzd 14169 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ∈ ℂ)
6766mul01d 11434 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0) = 0)
68 lgsne0 27298 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑁 gcd 𝑀) = 1))
69 gcdcom 16532 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
7069eqeq1d 2737 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝑁) = 1))
7168, 70bitrd 279 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1))
722, 4, 71syl2anr 597 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1))
7372necon1bbid 2971 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0))
7473ad2ant2r 747 . . . . 5 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0))
7574biimpa 476 . . . 4 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) = 0)
7675oveq2d 7421 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0))
77 lgsne0 27298 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 /L 𝑁) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1))
7877necon1bbid 2971 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))
794, 2, 78syl2an 596 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))
8079ad2ant2r 747 . . . 4 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (¬ (𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0))
8180biimpa 476 . . 3 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = 0)
8267, 76, 813eqtr4rd 2781 . 2 ((((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) ∧ ¬ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
8335, 82pm2.61dan 812 1 (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134  cmin 11466  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  cz 12588  cexp 14079  abscabs 15253  cdvds 16272   gcd cgcd 16513  cprime 16690   /L clgs 27257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-dvds 16273  df-gcd 16514  df-prm 16691  df-phi 16785  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-gsum 17456  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-drng 20691  df-field 20692  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-zn 21467  df-lgs 27258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator