Proof of Theorem lgsquad3
| Step | Hyp | Ref
| Expression |
| 1 | | simplrl 777 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) |
| 2 | | nnz 12634 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) |
| 4 | | nnz 12634 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
| 5 | 4 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ) |
| 6 | | lgscl 27355 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 /L 𝑀) ∈
ℤ) |
| 7 | 3, 5, 6 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℤ) |
| 8 | 7 | zred 12722 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℝ) |
| 9 | | absresq 15341 |
. . . . . . 7
⊢ ((𝑁 /L 𝑀) ∈ ℝ →
((abs‘(𝑁
/L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2)) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = ((𝑁 /L 𝑀)↑2)) |
| 11 | 3, 5 | gcdcomd 16551 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
| 12 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1) |
| 13 | 11, 12 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1) |
| 14 | | lgsabs1 27380 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
((abs‘(𝑁
/L 𝑀)) =
1 ↔ (𝑁 gcd 𝑀) = 1)) |
| 15 | 3, 5, 14 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀)) = 1 ↔ (𝑁 gcd 𝑀) = 1)) |
| 16 | 13, 15 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (abs‘(𝑁 /L 𝑀)) = 1) |
| 17 | 16 | oveq1d 7446 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = (1↑2)) |
| 18 | | sq1 14234 |
. . . . . . 7
⊢
(1↑2) = 1 |
| 19 | 17, 18 | eqtrdi 2793 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((abs‘(𝑁 /L 𝑀))↑2) = 1) |
| 20 | 7 | zcnd 12723 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) ∈ ℂ) |
| 21 | 20 | sqvald 14183 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑁 /L 𝑀)↑2) = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))) |
| 22 | 10, 19, 21 | 3eqtr3d 2785 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 1 = ((𝑁 /L 𝑀) · (𝑁 /L 𝑀))) |
| 23 | 22 | oveq2d 7447 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))) |
| 24 | | lgscl 27355 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 /L 𝑁) ∈
ℤ) |
| 25 | 5, 3, 24 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℤ) |
| 26 | 25 | zcnd 12723 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) ∈ ℂ) |
| 27 | 26, 20, 20 | mulassd 11284 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((𝑀 /L 𝑁) · ((𝑁 /L 𝑀) · (𝑁 /L 𝑀)))) |
| 28 | 23, 27 | eqtr4d 2780 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀))) |
| 29 | 26 | mulridd 11278 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · 1) = (𝑀 /L 𝑁)) |
| 30 | | simplll 775 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℕ) |
| 31 | | simpllr 776 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀) |
| 32 | | simplrr 778 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁) |
| 33 | 30, 31, 1, 32, 12 | lgsquad2 27430 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) /
2)))) |
| 34 | 33 | oveq1d 7446 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) · (𝑁 /L 𝑀)) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) |
| 35 | 28, 29, 34 | 3eqtr3d 2785 |
. 2
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) |
| 36 | | neg1cn 12380 |
. . . . . 6
⊢ -1 ∈
ℂ |
| 37 | 36 | a1i 11 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → -1 ∈
ℂ) |
| 38 | | neg1ne0 12382 |
. . . . . 6
⊢ -1 ≠
0 |
| 39 | 38 | a1i 11 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → -1 ≠ 0) |
| 40 | 4 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ) |
| 41 | | simpllr 776 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑀) |
| 42 | | 1zzd 12648 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 1 ∈
ℤ) |
| 43 | | 2prm 16729 |
. . . . . . . . 9
⊢ 2 ∈
ℙ |
| 44 | | nprmdvds1 16743 |
. . . . . . . . 9
⊢ (2 ∈
ℙ → ¬ 2 ∥ 1) |
| 45 | 43, 44 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥
1) |
| 46 | | omoe 16401 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ ¬ 2
∥ 𝑀) ∧ (1 ∈
ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑀 − 1)) |
| 47 | 40, 41, 42, 45, 46 | syl22anc 839 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑀 − 1)) |
| 48 | | 2z 12649 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 49 | | 2ne0 12370 |
. . . . . . . 8
⊢ 2 ≠
0 |
| 50 | | peano2zm 12660 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈
ℤ) |
| 51 | 40, 50 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 − 1) ∈ ℤ) |
| 52 | | dvdsval2 16293 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 2 ≠ 0 ∧ (𝑀 − 1) ∈ ℤ) → (2
∥ (𝑀 − 1)
↔ ((𝑀 − 1) / 2)
∈ ℤ)) |
| 53 | 48, 49, 51, 52 | mp3an12i 1467 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑀 − 1) ↔ ((𝑀 − 1) / 2) ∈
ℤ)) |
| 54 | 47, 53 | mpbid 232 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((𝑀 − 1) / 2) ∈
ℤ) |
| 55 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁) → 𝑁 ∈
ℤ) |
| 56 | 55 | ad2antlr 727 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) |
| 57 | | simplrr 778 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ¬ 2 ∥ 𝑁) |
| 58 | | omoe 16401 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁) ∧ (1 ∈
ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1)) |
| 59 | 56, 57, 42, 45, 58 | syl22anc 839 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → 2 ∥ (𝑁 − 1)) |
| 60 | | peano2zm 12660 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 61 | 56, 60 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑁 − 1) ∈ ℤ) |
| 62 | | dvdsval2 16293 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2
∥ (𝑁 − 1)
↔ ((𝑁 − 1) / 2)
∈ ℤ)) |
| 63 | 48, 49, 61, 62 | mp3an12i 1467 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈
ℤ)) |
| 64 | 59, 63 | mpbid 232 |
. . . . . 6
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((𝑁 − 1) / 2) ∈
ℤ) |
| 65 | 54, 64 | zmulcld 12728 |
. . . . 5
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) ∈
ℤ) |
| 66 | 37, 39, 65 | expclzd 14191 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ∈
ℂ) |
| 67 | 66 | mul01d 11460 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · 0) =
0) |
| 68 | | lgsne0 27379 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑁 gcd 𝑀) = 1)) |
| 69 | | gcdcom 16550 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
| 70 | 69 | eqeq1d 2739 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 1 ↔ (𝑀 gcd 𝑁) = 1)) |
| 71 | 68, 70 | bitrd 279 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) |
| 72 | 2, 4, 71 | syl2anr 597 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 /L 𝑀) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) |
| 73 | 72 | necon1bbid 2980 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0)) |
| 74 | 73 | ad2ant2r 747 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑁 /L 𝑀) = 0)) |
| 75 | 74 | biimpa 476 |
. . . 4
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑁 /L 𝑀) = 0) |
| 76 | 75 | oveq2d 7447 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀)) = ((-1↑(((𝑀 − 1) / 2) ·
((𝑁 − 1) / 2)))
· 0)) |
| 77 | | lgsne0 27379 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 /L 𝑁) ≠ 0 ↔ (𝑀 gcd 𝑁) = 1)) |
| 78 | 77 | necon1bbid 2980 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) |
| 79 | 4, 2, 78 | syl2an 596 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) |
| 80 | 79 | ad2ant2r 747 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (¬
(𝑀 gcd 𝑁) = 1 ↔ (𝑀 /L 𝑁) = 0)) |
| 81 | 80 | biimpa 476 |
. . 3
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = 0) |
| 82 | 67, 76, 81 | 3eqtr4rd 2788 |
. 2
⊢ ((((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) ∧ ¬
(𝑀 gcd 𝑁) = 1) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) ·
(𝑁 /L
𝑀))) |
| 83 | 35, 82 | pm2.61dan 813 |
1
⊢ (((𝑀 ∈ ℕ ∧ ¬ 2
∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2
∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) ·
((𝑁 − 1) / 2)))
· (𝑁
/L 𝑀))) |