MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdstri Structured version   Visualization version   GIF version

Theorem metdstri 24756
Description: A generalization of the triangle inequality to the point-set distance function. Under the usual notation where the same symbol 𝑑 denotes the point-point and point-set distance functions, this theorem would be written 𝑑(𝑎, 𝑆) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑆). (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdstri (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdstri
StepHypRef Expression
1 simprr 772 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐹𝐴) ∈ ℝ)
2 simprl 770 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ∈ ℝ)
3 rexsub 13153 . . . . . . . . . . . 12 (((𝐹𝐴) ∈ ℝ ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) = ((𝐹𝐴) − (𝐴𝐷𝐵)))
41, 2, 3syl2anc 584 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) = ((𝐹𝐴) − (𝐴𝐷𝐵)))
54oveq2d 7369 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))))
6 simpll 766 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
76adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋))
8 simprr 772 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
98adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐵𝑋)
10 simprl 770 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
1110adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐴𝑋)
121, 2resubcld 11566 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) − (𝐴𝐷𝐵)) ∈ ℝ)
132leidd 11704 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ≤ (𝐴𝐷𝐵))
14 xmetsym 24251 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
156, 10, 8, 14syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1615adantr 480 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1716eqcomd 2735 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
181recnd 11162 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐹𝐴) ∈ ℂ)
192recnd 11162 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ∈ ℂ)
2018, 19nncand 11498 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))) = (𝐴𝐷𝐵))
2113, 17, 203brtr4d 5127 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵𝐷𝐴) ≤ ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))))
22 blss2 24308 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) ∧ (((𝐹𝐴) − (𝐴𝐷𝐵)) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ ∧ (𝐵𝐷𝐴) ≤ ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))))) → (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
237, 9, 11, 12, 1, 21, 22syl33anc 1387 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
245, 23eqsstrd 3972 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
2524expr 456 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))))
266adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐷 ∈ (∞Met‘𝑋))
278adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐵𝑋)
28 metdscn.f . . . . . . . . . . . . . . . . . 18 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2928metdsf 24753 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3029adantr 480 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐹:𝑋⟶(0[,]+∞))
3130, 10ffvelcdmd 7023 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ (0[,]+∞))
32 eliccxr 13356 . . . . . . . . . . . . . . 15 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
3331, 32syl 17 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ ℝ*)
3433adantr 480 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐹𝐴) ∈ ℝ*)
35 xmetcl 24235 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
366, 10, 8, 35syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ ℝ*)
3736adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐴𝐷𝐵) ∈ ℝ*)
3837xnegcld 13220 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → -𝑒(𝐴𝐷𝐵) ∈ ℝ*)
3934, 38xaddcld 13221 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
4039adantrr 717 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
41 pnfxr 11188 . . . . . . . . . . . 12 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → +∞ ∈ ℝ*)
43 pnfge 13050 . . . . . . . . . . . 12 (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ* → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞)
4440, 43syl 17 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞)
45 ssbl 24327 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) ∧ (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐵(ball‘𝐷)+∞))
4626, 27, 40, 42, 44, 45syl221anc 1383 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐵(ball‘𝐷)+∞))
47 simprr 772 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐹𝐴) = +∞)
4847oveq2d 7369 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴(ball‘𝐷)(𝐹𝐴)) = (𝐴(ball‘𝐷)+∞))
4910adantr 480 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐴𝑋)
50 simprl 770 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴𝐷𝐵) ∈ ℝ)
51 xblpnf 24300 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐵 ∈ (𝐴(ball‘𝐷)+∞) ↔ (𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
5226, 49, 51syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵 ∈ (𝐴(ball‘𝐷)+∞) ↔ (𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
5327, 50, 52mpbir2and 713 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐵 ∈ (𝐴(ball‘𝐷)+∞))
54 blpnfctr 24340 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵 ∈ (𝐴(ball‘𝐷)+∞)) → (𝐴(ball‘𝐷)+∞) = (𝐵(ball‘𝐷)+∞))
5526, 49, 53, 54syl3anc 1373 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴(ball‘𝐷)+∞) = (𝐵(ball‘𝐷)+∞))
5648, 55eqtr2d 2765 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)(𝐹𝐴)))
5746, 56sseqtrd 3974 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
5857expr 456 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) = +∞ → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))))
59 elxrge0 13378 . . . . . . . . . . . . . 14 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
6059simprbi 496 . . . . . . . . . . . . 13 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
6131, 60syl 17 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐹𝐴))
62 ge0nemnf 13093 . . . . . . . . . . . 12 (((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)) → (𝐹𝐴) ≠ -∞)
6333, 61, 62syl2anc 584 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≠ -∞)
6433, 63jca 511 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞))
6564adantr 480 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞))
66 xrnemnf 13037 . . . . . . . . 9 (((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞) ↔ ((𝐹𝐴) ∈ ℝ ∨ (𝐹𝐴) = +∞))
6765, 66sylib 218 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ ∨ (𝐹𝐴) = +∞))
6825, 58, 67mpjaod 860 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
69 pnfnlt 13048 . . . . . . . . . . 11 ((𝐹𝐴) ∈ ℝ* → ¬ +∞ < (𝐹𝐴))
7033, 69syl 17 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ¬ +∞ < (𝐹𝐴))
7170adantr 480 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → ¬ +∞ < (𝐹𝐴))
7236xnegcld 13220 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → -𝑒(𝐴𝐷𝐵) ∈ ℝ*)
7333, 72xaddcld 13221 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
74 xbln0 24318 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋 ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
756, 8, 73, 74syl3anc 1373 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
76 xposdif 13182 . . . . . . . . . . . . 13 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
7736, 33, 76syl2anc 584 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
7875, 77bitr4d 282 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ (𝐴𝐷𝐵) < (𝐹𝐴)))
79 breq1 5098 . . . . . . . . . . 11 ((𝐴𝐷𝐵) = +∞ → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ +∞ < (𝐹𝐴)))
8078, 79sylan9bb 509 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ +∞ < (𝐹𝐴)))
8180necon1bbid 2964 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (¬ +∞ < (𝐹𝐴) ↔ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = ∅))
8271, 81mpbid 232 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = ∅)
83 0ss 4353 . . . . . . . 8 ∅ ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))
8482, 83eqsstrdi 3982 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
85 xmetge0 24248 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
866, 10, 8, 85syl3anc 1373 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐴𝐷𝐵))
87 ge0nemnf 13093 . . . . . . . . . 10 (((𝐴𝐷𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴𝐷𝐵)) → (𝐴𝐷𝐵) ≠ -∞)
8836, 86, 87syl2anc 584 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≠ -∞)
8936, 88jca 511 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ≠ -∞))
90 xrnemnf 13037 . . . . . . . 8 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ≠ -∞) ↔ ((𝐴𝐷𝐵) ∈ ℝ ∨ (𝐴𝐷𝐵) = +∞))
9189, 90sylib 218 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ ℝ ∨ (𝐴𝐷𝐵) = +∞))
9268, 84, 91mpjaodan 960 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
93 sslin 4196 . . . . . 6 ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))))
9492, 93syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))))
9533xrleidd 13072 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ (𝐹𝐴))
96 simplr 768 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝑆𝑋)
9728metdsge 24754 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
986, 96, 10, 33, 97syl31anc 1375 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
9995, 98mpbid 232 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
100 sseq0 4356 . . . . 5 (((𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ∧ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅)
10194, 99, 100syl2anc 584 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅)
10228metdsge 24754 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐵𝑋) ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅))
1036, 96, 8, 73, 102syl31anc 1375 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅))
104101, 103mpbird 257 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵))
10530, 8ffvelcdmd 7023 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ (0[,]+∞))
106 eliccxr 13356 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
107105, 106syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ ℝ*)
108 elxrge0 13378 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) ↔ ((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)))
109108simprbi 496 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐵))
110105, 109syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐹𝐵))
111 xlesubadd 13183 . . . 4 ((((𝐹𝐴) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹𝐴) ∧ (𝐴𝐷𝐵) ≠ -∞ ∧ 0 ≤ (𝐹𝐵))) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵))))
11233, 36, 107, 61, 88, 110, 111syl33anc 1387 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵))))
113104, 112mpbid 232 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)))
114 xaddcom 13160 . . 3 (((𝐹𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) → ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
115107, 36, 114syl2anc 584 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
116113, 115breqtrd 5121 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cin 3904  wss 3905  c0 4286   class class class wbr 5095  cmpt 5176  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  infcinf 9350  cr 11027  0cc0 11028  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  cmin 11365  -𝑒cxne 13029   +𝑒 cxad 13030  [,]cicc 13269  ∞Metcxmet 21264  ballcbl 21266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-ec 8634  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-2 12209  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-psmet 21271  df-xmet 21272  df-bl 21274
This theorem is referenced by:  metdsle  24757  metdscnlem  24760  metnrmlem1  24764
  Copyright terms: Public domain W3C validator