MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdstri Structured version   Visualization version   GIF version

Theorem metdstri 24214
Description: A generalization of the triangle inequality to the point-set distance function. Under the usual notation where the same symbol 𝑑 denotes the point-point and point-set distance functions, this theorem would be written 𝑑(𝑎, 𝑆) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑆). (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdstri (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdstri
StepHypRef Expression
1 simprr 771 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐹𝐴) ∈ ℝ)
2 simprl 769 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ∈ ℝ)
3 rexsub 13152 . . . . . . . . . . . 12 (((𝐹𝐴) ∈ ℝ ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) = ((𝐹𝐴) − (𝐴𝐷𝐵)))
41, 2, 3syl2anc 584 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) = ((𝐹𝐴) − (𝐴𝐷𝐵)))
54oveq2d 7373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))))
6 simpll 765 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
76adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐷 ∈ (∞Met‘𝑋))
8 simprr 771 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
98adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐵𝑋)
10 simprl 769 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
1110adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → 𝐴𝑋)
121, 2resubcld 11583 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) − (𝐴𝐷𝐵)) ∈ ℝ)
132leidd 11721 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ≤ (𝐴𝐷𝐵))
14 xmetsym 23700 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
156, 10, 8, 14syl3anc 1371 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1615adantr 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
1716eqcomd 2742 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
181recnd 11183 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐹𝐴) ∈ ℂ)
192recnd 11183 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐴𝐷𝐵) ∈ ℂ)
2018, 19nncand 11517 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))) = (𝐴𝐷𝐵))
2113, 17, 203brtr4d 5137 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵𝐷𝐴) ≤ ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))))
22 blss2 23757 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) ∧ (((𝐹𝐴) − (𝐴𝐷𝐵)) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ ∧ (𝐵𝐷𝐴) ≤ ((𝐹𝐴) − ((𝐹𝐴) − (𝐴𝐷𝐵))))) → (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
237, 9, 11, 12, 1, 21, 22syl33anc 1385 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) − (𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
245, 23eqsstrd 3982 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) ∈ ℝ)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
2524expr 457 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))))
266adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐷 ∈ (∞Met‘𝑋))
278adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐵𝑋)
28 metdscn.f . . . . . . . . . . . . . . . . . 18 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2928metdsf 24211 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3029adantr 481 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐹:𝑋⟶(0[,]+∞))
3130, 10ffvelcdmd 7036 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ (0[,]+∞))
32 eliccxr 13352 . . . . . . . . . . . . . . 15 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
3331, 32syl 17 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ ℝ*)
3433adantr 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐹𝐴) ∈ ℝ*)
35 xmetcl 23684 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
366, 10, 8, 35syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ ℝ*)
3736adantr 481 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐴𝐷𝐵) ∈ ℝ*)
3837xnegcld 13219 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → -𝑒(𝐴𝐷𝐵) ∈ ℝ*)
3934, 38xaddcld 13220 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
4039adantrr 715 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
41 pnfxr 11209 . . . . . . . . . . . 12 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → +∞ ∈ ℝ*)
43 pnfge 13051 . . . . . . . . . . . 12 (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ* → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞)
4440, 43syl 17 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞)
45 ssbl 23776 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) ∧ (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐵(ball‘𝐷)+∞))
4626, 27, 40, 42, 44, 45syl221anc 1381 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐵(ball‘𝐷)+∞))
47 simprr 771 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐹𝐴) = +∞)
4847oveq2d 7373 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴(ball‘𝐷)(𝐹𝐴)) = (𝐴(ball‘𝐷)+∞))
4910adantr 481 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐴𝑋)
50 simprl 769 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴𝐷𝐵) ∈ ℝ)
51 xblpnf 23749 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐵 ∈ (𝐴(ball‘𝐷)+∞) ↔ (𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
5226, 49, 51syl2anc 584 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵 ∈ (𝐴(ball‘𝐷)+∞) ↔ (𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
5327, 50, 52mpbir2and 711 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → 𝐵 ∈ (𝐴(ball‘𝐷)+∞))
54 blpnfctr 23789 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵 ∈ (𝐴(ball‘𝐷)+∞)) → (𝐴(ball‘𝐷)+∞) = (𝐵(ball‘𝐷)+∞))
5526, 49, 53, 54syl3anc 1371 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐴(ball‘𝐷)+∞) = (𝐵(ball‘𝐷)+∞))
5648, 55eqtr2d 2777 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)(𝐹𝐴)))
5746, 56sseqtrd 3984 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ((𝐴𝐷𝐵) ∈ ℝ ∧ (𝐹𝐴) = +∞)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
5857expr 457 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) = +∞ → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))))
59 elxrge0 13374 . . . . . . . . . . . . . 14 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
6059simprbi 497 . . . . . . . . . . . . 13 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
6131, 60syl 17 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐹𝐴))
62 ge0nemnf 13092 . . . . . . . . . . . 12 (((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)) → (𝐹𝐴) ≠ -∞)
6333, 61, 62syl2anc 584 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≠ -∞)
6433, 63jca 512 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞))
6564adantr 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞))
66 xrnemnf 13038 . . . . . . . . 9 (((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐴) ≠ -∞) ↔ ((𝐹𝐴) ∈ ℝ ∨ (𝐹𝐴) = +∞))
6765, 66sylib 217 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → ((𝐹𝐴) ∈ ℝ ∨ (𝐹𝐴) = +∞))
6825, 58, 67mpjaod 858 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) ∈ ℝ) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
69 pnfnlt 13049 . . . . . . . . . . 11 ((𝐹𝐴) ∈ ℝ* → ¬ +∞ < (𝐹𝐴))
7033, 69syl 17 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ¬ +∞ < (𝐹𝐴))
7170adantr 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → ¬ +∞ < (𝐹𝐴))
7236xnegcld 13219 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → -𝑒(𝐴𝐷𝐵) ∈ ℝ*)
7333, 72xaddcld 13220 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*)
74 xbln0 23767 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋 ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
756, 8, 73, 74syl3anc 1371 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
76 xposdif 13181 . . . . . . . . . . . . 13 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
7736, 33, 76syl2anc 584 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ 0 < ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))))
7875, 77bitr4d 281 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ (𝐴𝐷𝐵) < (𝐹𝐴)))
79 breq1 5108 . . . . . . . . . . 11 ((𝐴𝐷𝐵) = +∞ → ((𝐴𝐷𝐵) < (𝐹𝐴) ↔ +∞ < (𝐹𝐴)))
8078, 79sylan9bb 510 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ≠ ∅ ↔ +∞ < (𝐹𝐴)))
8180necon1bbid 2983 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (¬ +∞ < (𝐹𝐴) ↔ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = ∅))
8271, 81mpbid 231 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) = ∅)
83 0ss 4356 . . . . . . . 8 ∅ ⊆ (𝐴(ball‘𝐷)(𝐹𝐴))
8482, 83eqsstrdi 3998 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ (𝐴𝐷𝐵) = +∞) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
85 xmetge0 23697 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
866, 10, 8, 85syl3anc 1371 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐴𝐷𝐵))
87 ge0nemnf 13092 . . . . . . . . . 10 (((𝐴𝐷𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴𝐷𝐵)) → (𝐴𝐷𝐵) ≠ -∞)
8836, 86, 87syl2anc 584 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≠ -∞)
8936, 88jca 512 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ≠ -∞))
90 xrnemnf 13038 . . . . . . . 8 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ≠ -∞) ↔ ((𝐴𝐷𝐵) ∈ ℝ ∨ (𝐴𝐷𝐵) = +∞))
9189, 90sylib 217 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ ℝ ∨ (𝐴𝐷𝐵) = +∞))
9268, 84, 91mpjaodan 957 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)))
93 sslin 4194 . . . . . 6 ((𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵))) ⊆ (𝐴(ball‘𝐷)(𝐹𝐴)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))))
9492, 93syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))))
9533xrleidd 13071 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ (𝐹𝐴))
96 simplr 767 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝑆𝑋)
9728metdsge 24212 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
986, 96, 10, 33, 97syl31anc 1373 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
9995, 98mpbid 231 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
100 sseq0 4359 . . . . 5 (((𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) ⊆ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ∧ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅)
10194, 99, 100syl2anc 584 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅)
10228metdsge 24212 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐵𝑋) ∧ ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ∈ ℝ*) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅))
1036, 96, 8, 73, 102syl31anc 1373 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝑆 ∩ (𝐵(ball‘𝐷)((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)))) = ∅))
104101, 103mpbird 256 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵))
10530, 8ffvelcdmd 7036 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ (0[,]+∞))
106 eliccxr 13352 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
107105, 106syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ ℝ*)
108 elxrge0 13374 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) ↔ ((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)))
109108simprbi 497 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐵))
110105, 109syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 0 ≤ (𝐹𝐵))
111 xlesubadd 13182 . . . 4 ((((𝐹𝐴) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹𝐴) ∧ (𝐴𝐷𝐵) ≠ -∞ ∧ 0 ≤ (𝐹𝐵))) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵))))
11233, 36, 107, 61, 88, 110, 111syl33anc 1385 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴) +𝑒 -𝑒(𝐴𝐷𝐵)) ≤ (𝐹𝐵) ↔ (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵))))
113104, 112mpbid 231 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)))
114 xaddcom 13159 . . 3 (((𝐹𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) → ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
115107, 36, 114syl2anc 584 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐵) +𝑒 (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
116113, 115breqtrd 5131 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  cin 3909  wss 3910  c0 4282   class class class wbr 5105  cmpt 5188  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  infcinf 9377  cr 11050  0cc0 11051  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -𝑒cxne 13030   +𝑒 cxad 13031  [,]cicc 13267  ∞Metcxmet 20781  ballcbl 20783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-ec 8650  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-psmet 20788  df-xmet 20789  df-bl 20791
This theorem is referenced by:  metdsle  24215  metdscnlem  24218  metnrmlem1  24222
  Copyright terms: Public domain W3C validator