Proof of Theorem eupth2lem2
Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → 𝐵 = 𝐵) |
2 | 1 | olcd 870 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 ∨ 𝐵 = 𝐵)) |
3 | 2 | biantrud 531 |
. . . . 5
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 ≠ 𝐵 ↔ (𝐴 ≠ 𝐵 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵)))) |
4 | | eupth2lem2.1 |
. . . . . 6
⊢ 𝐵 ∈ V |
5 | | eupth2lem1 28483 |
. . . . . 6
⊢ (𝐵 ∈ V → (𝐵 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴 ≠ 𝐵 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵)))) |
6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ (𝐵 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴 ≠ 𝐵 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵))) |
7 | 3, 6 | bitr4di 288 |
. . . 4
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 ≠ 𝐵 ↔ 𝐵 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}))) |
8 | | simpr 484 |
. . . . 5
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → 𝐵 = 𝑈) |
9 | 8 | eleq1d 2823 |
. . . 4
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}))) |
10 | 7, 9 | bitrd 278 |
. . 3
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 ≠ 𝐵 ↔ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}))) |
11 | 10 | necon1bbid 2982 |
. 2
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (¬ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ 𝐴 = 𝐵)) |
12 | | simpl 482 |
. . . . . . 7
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → 𝐵 ≠ 𝐶) |
13 | | neeq1 3005 |
. . . . . . 7
⊢ (𝐵 = 𝐴 → (𝐵 ≠ 𝐶 ↔ 𝐴 ≠ 𝐶)) |
14 | 12, 13 | syl5ibcom 244 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 → 𝐴 ≠ 𝐶)) |
15 | 14 | pm4.71rd 562 |
. . . . 5
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐴))) |
16 | | eqcom 2745 |
. . . . 5
⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
17 | | ancom 460 |
. . . . 5
⊢ ((𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐴)) |
18 | 15, 16, 17 | 3bitr4g 313 |
. . . 4
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 = 𝐵 ↔ (𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶))) |
19 | 12 | neneqd 2947 |
. . . . . . 7
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → ¬ 𝐵 = 𝐶) |
20 | | biorf 933 |
. . . . . . 7
⊢ (¬
𝐵 = 𝐶 → (𝐵 = 𝐴 ↔ (𝐵 = 𝐶 ∨ 𝐵 = 𝐴))) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 ↔ (𝐵 = 𝐶 ∨ 𝐵 = 𝐴))) |
22 | | orcom 866 |
. . . . . 6
⊢ ((𝐵 = 𝐶 ∨ 𝐵 = 𝐴) ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
23 | 21, 22 | bitrdi 286 |
. . . . 5
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
24 | 23 | anbi1d 629 |
. . . 4
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → ((𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶) ↔ ((𝐵 = 𝐴 ∨ 𝐵 = 𝐶) ∧ 𝐴 ≠ 𝐶))) |
25 | 18, 24 | bitrd 278 |
. . 3
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 = 𝐵 ↔ ((𝐵 = 𝐴 ∨ 𝐵 = 𝐶) ∧ 𝐴 ≠ 𝐶))) |
26 | | ancom 460 |
. . 3
⊢ ((𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) ↔ ((𝐵 = 𝐴 ∨ 𝐵 = 𝐶) ∧ 𝐴 ≠ 𝐶)) |
27 | 25, 26 | bitr4di 288 |
. 2
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 = 𝐵 ↔ (𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)))) |
28 | | eupth2lem1 28483 |
. . . 4
⊢ (𝐵 ∈ V → (𝐵 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}) ↔ (𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)))) |
29 | 4, 28 | ax-mp 5 |
. . 3
⊢ (𝐵 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}) ↔ (𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
30 | 8 | eleq1d 2823 |
. . 3
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}) ↔ 𝑈 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}))) |
31 | 29, 30 | bitr3id 284 |
. 2
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → ((𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) ↔ 𝑈 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}))) |
32 | 11, 27, 31 | 3bitrd 304 |
1
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (¬ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ 𝑈 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}))) |