Proof of Theorem eupth2lem2
| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → 𝐵 = 𝐵) |
| 2 | 1 | olcd 875 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 ∨ 𝐵 = 𝐵)) |
| 3 | 2 | biantrud 531 |
. . . . 5
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 ≠ 𝐵 ↔ (𝐴 ≠ 𝐵 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵)))) |
| 4 | | eupth2lem2.1 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 5 | | eupth2lem1 30237 |
. . . . . 6
⊢ (𝐵 ∈ V → (𝐵 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴 ≠ 𝐵 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵)))) |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ (𝐵 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ (𝐴 ≠ 𝐵 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵))) |
| 7 | 3, 6 | bitr4di 289 |
. . . 4
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 ≠ 𝐵 ↔ 𝐵 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}))) |
| 8 | | simpr 484 |
. . . . 5
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → 𝐵 = 𝑈) |
| 9 | 8 | eleq1d 2826 |
. . . 4
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}))) |
| 10 | 7, 9 | bitrd 279 |
. . 3
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 ≠ 𝐵 ↔ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}))) |
| 11 | 10 | necon1bbid 2980 |
. 2
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (¬ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ 𝐴 = 𝐵)) |
| 12 | | simpl 482 |
. . . . . . 7
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → 𝐵 ≠ 𝐶) |
| 13 | | neeq1 3003 |
. . . . . . 7
⊢ (𝐵 = 𝐴 → (𝐵 ≠ 𝐶 ↔ 𝐴 ≠ 𝐶)) |
| 14 | 12, 13 | syl5ibcom 245 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 → 𝐴 ≠ 𝐶)) |
| 15 | 14 | pm4.71rd 562 |
. . . . 5
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐴))) |
| 16 | | eqcom 2744 |
. . . . 5
⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
| 17 | | ancom 460 |
. . . . 5
⊢ ((𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐴)) |
| 18 | 15, 16, 17 | 3bitr4g 314 |
. . . 4
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 = 𝐵 ↔ (𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶))) |
| 19 | 12 | neneqd 2945 |
. . . . . . 7
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → ¬ 𝐵 = 𝐶) |
| 20 | | biorf 937 |
. . . . . . 7
⊢ (¬
𝐵 = 𝐶 → (𝐵 = 𝐴 ↔ (𝐵 = 𝐶 ∨ 𝐵 = 𝐴))) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 ↔ (𝐵 = 𝐶 ∨ 𝐵 = 𝐴))) |
| 22 | | orcom 871 |
. . . . . 6
⊢ ((𝐵 = 𝐶 ∨ 𝐵 = 𝐴) ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
| 23 | 21, 22 | bitrdi 287 |
. . . . 5
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 = 𝐴 ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
| 24 | 23 | anbi1d 631 |
. . . 4
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → ((𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶) ↔ ((𝐵 = 𝐴 ∨ 𝐵 = 𝐶) ∧ 𝐴 ≠ 𝐶))) |
| 25 | 18, 24 | bitrd 279 |
. . 3
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 = 𝐵 ↔ ((𝐵 = 𝐴 ∨ 𝐵 = 𝐶) ∧ 𝐴 ≠ 𝐶))) |
| 26 | | ancom 460 |
. . 3
⊢ ((𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) ↔ ((𝐵 = 𝐴 ∨ 𝐵 = 𝐶) ∧ 𝐴 ≠ 𝐶)) |
| 27 | 25, 26 | bitr4di 289 |
. 2
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐴 = 𝐵 ↔ (𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)))) |
| 28 | | eupth2lem1 30237 |
. . . 4
⊢ (𝐵 ∈ V → (𝐵 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}) ↔ (𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)))) |
| 29 | 4, 28 | ax-mp 5 |
. . 3
⊢ (𝐵 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}) ↔ (𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶))) |
| 30 | 8 | eleq1d 2826 |
. . 3
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (𝐵 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}) ↔ 𝑈 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}))) |
| 31 | 29, 30 | bitr3id 285 |
. 2
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → ((𝐴 ≠ 𝐶 ∧ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) ↔ 𝑈 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}))) |
| 32 | 11, 27, 31 | 3bitrd 305 |
1
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈) → (¬ 𝑈 ∈ if(𝐴 = 𝐵, ∅, {𝐴, 𝐵}) ↔ 𝑈 ∈ if(𝐴 = 𝐶, ∅, {𝐴, 𝐶}))) |