![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochshpsat | Structured version Visualization version GIF version |
Description: A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014.) |
Ref | Expression |
---|---|
dochshpsat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochshpsat.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochshpsat.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochshpsat.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
dochshpsat.y | ⊢ 𝑌 = (LSHyp‘𝑈) |
dochshpsat.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochshpsat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑌) |
Ref | Expression |
---|---|
dochshpsat | ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | |
2 | dochshpsat.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑌) | |
3 | 2 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → 𝑋 ∈ 𝑌) |
4 | 1, 3 | eqeltrd 2838 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ 𝑌) |
5 | dochshpsat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | dochshpsat.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
7 | dochshpsat.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | eqid 2736 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
9 | dochshpsat.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
10 | dochshpsat.y | . . . . 5 ⊢ 𝑌 = (LSHyp‘𝑈) | |
11 | dochshpsat.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
12 | 5, 7, 11 | dvhlmod 39573 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
13 | 8, 10, 12, 2 | lshplss 37443 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (LSubSp‘𝑈)) |
14 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
15 | 14, 8 | lssss 20397 | . . . . . . 7 ⊢ (𝑋 ∈ (LSubSp‘𝑈) → 𝑋 ⊆ (Base‘𝑈)) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ (Base‘𝑈)) |
17 | 5, 7, 14, 8, 6 | dochlss 39817 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) |
18 | 11, 16, 17 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) |
19 | 5, 6, 7, 8, 9, 10, 11, 18 | dochsatshpb 39915 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) ∈ 𝑌)) |
20 | 19 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) ∈ 𝑌)) |
21 | 4, 20 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → ( ⊥ ‘𝑋) ∈ 𝐴) |
22 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
23 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → 𝑈 ∈ LMod) |
24 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐴) | |
25 | 22, 9, 23, 24 | lsatn0 37461 | . . . . 5 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ( ⊥ ‘𝑋) ≠ {(0g‘𝑈)}) |
26 | 25 | neneqd 2948 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ¬ ( ⊥ ‘𝑋) = {(0g‘𝑈)}) |
27 | 11 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | 5, 7, 6, 14, 22 | doch0 39821 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{(0g‘𝑈)}) = (Base‘𝑈)) |
29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ( ⊥ ‘{(0g‘𝑈)}) = (Base‘𝑈)) |
30 | 29 | eqeq2d 2747 | . . . . 5 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘{(0g‘𝑈)}) ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈))) |
31 | eqid 2736 | . . . . . . 7 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
32 | 5, 31, 7, 14, 6 | dochcl 39816 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
33 | 11, 16, 32 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
34 | 5, 31, 7, 22 | dih0rn 39747 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {(0g‘𝑈)} ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
35 | 11, 34 | syl 17 | . . . . . . 7 ⊢ (𝜑 → {(0g‘𝑈)} ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
36 | 5, 31, 6, 11, 33, 35 | doch11 39836 | . . . . . 6 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘{(0g‘𝑈)}) ↔ ( ⊥ ‘𝑋) = {(0g‘𝑈)})) |
37 | 36 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘{(0g‘𝑈)}) ↔ ( ⊥ ‘𝑋) = {(0g‘𝑈)})) |
38 | 30, 37 | bitr3d 280 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈) ↔ ( ⊥ ‘𝑋) = {(0g‘𝑈)})) |
39 | 26, 38 | mtbird 324 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ¬ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈)) |
40 | 5, 6, 7, 14, 10, 11, 2 | dochshpncl 39847 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) ≠ 𝑋 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈))) |
41 | 40 | necon1bbid 2983 | . . . 4 ⊢ (𝜑 → (¬ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈) ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
42 | 41 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (¬ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈) ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
43 | 39, 42 | mpbid 231 | . 2 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
44 | 21, 43 | impbida 799 | 1 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3910 {csn 4586 ran crn 5634 ‘cfv 6496 Basecbs 17083 0gc0g 17321 LModclmod 20322 LSubSpclss 20392 LSAtomsclsa 37436 LSHypclsh 37437 HLchlt 37812 LHypclh 38447 DVecHcdvh 39541 DIsoHcdih 39691 ocHcoch 39810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-riotaBAD 37415 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-tpos 8157 df-undef 8204 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-0g 17323 df-proset 18184 df-poset 18202 df-plt 18219 df-lub 18235 df-glb 18236 df-join 18237 df-meet 18238 df-p0 18314 df-p1 18315 df-lat 18321 df-clat 18388 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-cntz 19097 df-lsm 19418 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-drng 20187 df-lmod 20324 df-lss 20393 df-lsp 20433 df-lvec 20564 df-lsatoms 37438 df-lshyp 37439 df-oposet 37638 df-ol 37640 df-oml 37641 df-covers 37728 df-ats 37729 df-atl 37760 df-cvlat 37784 df-hlat 37813 df-llines 37961 df-lplanes 37962 df-lvols 37963 df-lines 37964 df-psubsp 37966 df-pmap 37967 df-padd 38259 df-lhyp 38451 df-laut 38452 df-ldil 38567 df-ltrn 38568 df-trl 38622 df-tgrp 39206 df-tendo 39218 df-edring 39220 df-dveca 39466 df-disoa 39492 df-dvech 39542 df-dib 39602 df-dic 39636 df-dih 39692 df-doch 39811 df-djh 39858 |
This theorem is referenced by: mapdordlem2 40100 |
Copyright terms: Public domain | W3C validator |