| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochshpsat | Structured version Visualization version GIF version | ||
| Description: A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014.) |
| Ref | Expression |
|---|---|
| dochshpsat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochshpsat.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| dochshpsat.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dochshpsat.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| dochshpsat.y | ⊢ 𝑌 = (LSHyp‘𝑈) |
| dochshpsat.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dochshpsat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| dochshpsat | ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | |
| 2 | dochshpsat.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑌) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → 𝑋 ∈ 𝑌) |
| 4 | 1, 3 | eqeltrd 2833 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ 𝑌) |
| 5 | dochshpsat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | dochshpsat.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 7 | dochshpsat.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 8 | eqid 2733 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 9 | dochshpsat.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 10 | dochshpsat.y | . . . . 5 ⊢ 𝑌 = (LSHyp‘𝑈) | |
| 11 | dochshpsat.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 12 | 5, 7, 11 | dvhlmod 41282 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 13 | 8, 10, 12, 2 | lshplss 39153 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (LSubSp‘𝑈)) |
| 14 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 15 | 14, 8 | lssss 20878 | . . . . . . 7 ⊢ (𝑋 ∈ (LSubSp‘𝑈) → 𝑋 ⊆ (Base‘𝑈)) |
| 16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ (Base‘𝑈)) |
| 17 | 5, 7, 14, 8, 6 | dochlss 41526 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) |
| 18 | 11, 16, 17 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘𝑋) ∈ (LSubSp‘𝑈)) |
| 19 | 5, 6, 7, 8, 9, 10, 11, 18 | dochsatshpb 41624 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) ∈ 𝑌)) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → (( ⊥ ‘𝑋) ∈ 𝐴 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) ∈ 𝑌)) |
| 21 | 4, 20 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → ( ⊥ ‘𝑋) ∈ 𝐴) |
| 22 | eqid 2733 | . . . . . 6 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 23 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → 𝑈 ∈ LMod) |
| 24 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐴) | |
| 25 | 22, 9, 23, 24 | lsatn0 39171 | . . . . 5 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ( ⊥ ‘𝑋) ≠ {(0g‘𝑈)}) |
| 26 | 25 | neneqd 2934 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ¬ ( ⊥ ‘𝑋) = {(0g‘𝑈)}) |
| 27 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 28 | 5, 7, 6, 14, 22 | doch0 41530 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{(0g‘𝑈)}) = (Base‘𝑈)) |
| 29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ( ⊥ ‘{(0g‘𝑈)}) = (Base‘𝑈)) |
| 30 | 29 | eqeq2d 2744 | . . . . 5 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘{(0g‘𝑈)}) ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈))) |
| 31 | eqid 2733 | . . . . . . 7 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
| 32 | 5, 31, 7, 14, 6 | dochcl 41525 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ (Base‘𝑈)) → ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 33 | 11, 16, 32 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ( ⊥ ‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 34 | 5, 31, 7, 22 | dih0rn 41456 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {(0g‘𝑈)} ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 35 | 11, 34 | syl 17 | . . . . . . 7 ⊢ (𝜑 → {(0g‘𝑈)} ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 36 | 5, 31, 6, 11, 33, 35 | doch11 41545 | . . . . . 6 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘{(0g‘𝑈)}) ↔ ( ⊥ ‘𝑋) = {(0g‘𝑈)})) |
| 37 | 36 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘{(0g‘𝑈)}) ↔ ( ⊥ ‘𝑋) = {(0g‘𝑈)})) |
| 38 | 30, 37 | bitr3d 281 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈) ↔ ( ⊥ ‘𝑋) = {(0g‘𝑈)})) |
| 39 | 26, 38 | mtbird 325 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ¬ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈)) |
| 40 | 5, 6, 7, 14, 10, 11, 2 | dochshpncl 41556 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) ≠ 𝑋 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈))) |
| 41 | 40 | necon1bbid 2968 | . . . 4 ⊢ (𝜑 → (¬ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈) ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → (¬ ( ⊥ ‘( ⊥ ‘𝑋)) = (Base‘𝑈) ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
| 43 | 39, 42 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ ( ⊥ ‘𝑋) ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 44 | 21, 43 | impbida 800 | 1 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4577 ran crn 5622 ‘cfv 6489 Basecbs 17127 0gc0g 17350 LModclmod 20802 LSubSpclss 20873 LSAtomsclsa 39146 LSHypclsh 39147 HLchlt 39522 LHypclh 40156 DVecHcdvh 41250 DIsoHcdih 41400 ocHcoch 41519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-riotaBAD 39125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-0g 17352 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cntz 19237 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-drng 20655 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lvec 21046 df-lsatoms 39148 df-lshyp 39149 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-llines 39670 df-lplanes 39671 df-lvols 39672 df-lines 39673 df-psubsp 39675 df-pmap 39676 df-padd 39968 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 df-tgrp 40915 df-tendo 40927 df-edring 40929 df-dveca 41175 df-disoa 41201 df-dvech 41251 df-dib 41311 df-dic 41345 df-dih 41401 df-doch 41520 df-djh 41567 |
| This theorem is referenced by: mapdordlem2 41809 |
| Copyright terms: Public domain | W3C validator |