Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . 4
β’ ((π β§ ( β₯ β( β₯
βπ)) = π) β ( β₯ β( β₯
βπ)) = π) |
2 | | dochshpsat.x |
. . . . 5
β’ (π β π β π) |
3 | 2 | adantr 481 |
. . . 4
β’ ((π β§ ( β₯ β( β₯
βπ)) = π) β π β π) |
4 | 1, 3 | eqeltrd 2833 |
. . 3
β’ ((π β§ ( β₯ β( β₯
βπ)) = π) β ( β₯ β( β₯
βπ)) β π) |
5 | | dochshpsat.h |
. . . . 5
β’ π» = (LHypβπΎ) |
6 | | dochshpsat.o |
. . . . 5
β’ β₯ =
((ocHβπΎ)βπ) |
7 | | dochshpsat.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
8 | | eqid 2732 |
. . . . 5
β’
(LSubSpβπ) =
(LSubSpβπ) |
9 | | dochshpsat.a |
. . . . 5
β’ π΄ = (LSAtomsβπ) |
10 | | dochshpsat.y |
. . . . 5
β’ π = (LSHypβπ) |
11 | | dochshpsat.k |
. . . . 5
β’ (π β (πΎ β HL β§ π β π»)) |
12 | 5, 7, 11 | dvhlmod 39969 |
. . . . . . . 8
β’ (π β π β LMod) |
13 | 8, 10, 12, 2 | lshplss 37839 |
. . . . . . 7
β’ (π β π β (LSubSpβπ)) |
14 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
15 | 14, 8 | lssss 20539 |
. . . . . . 7
β’ (π β (LSubSpβπ) β π β (Baseβπ)) |
16 | 13, 15 | syl 17 |
. . . . . 6
β’ (π β π β (Baseβπ)) |
17 | 5, 7, 14, 8, 6 | dochlss 40213 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π β (Baseβπ)) β ( β₯ βπ) β (LSubSpβπ)) |
18 | 11, 16, 17 | syl2anc 584 |
. . . . 5
β’ (π β ( β₯ βπ) β (LSubSpβπ)) |
19 | 5, 6, 7, 8, 9, 10,
11, 18 | dochsatshpb 40311 |
. . . 4
β’ (π β (( β₯ βπ) β π΄ β ( β₯ β( β₯
βπ)) β π)) |
20 | 19 | adantr 481 |
. . 3
β’ ((π β§ ( β₯ β( β₯
βπ)) = π) β (( β₯ βπ) β π΄ β ( β₯ β( β₯
βπ)) β π)) |
21 | 4, 20 | mpbird 256 |
. 2
β’ ((π β§ ( β₯ β( β₯
βπ)) = π) β ( β₯ βπ) β π΄) |
22 | | eqid 2732 |
. . . . . 6
β’
(0gβπ) = (0gβπ) |
23 | 12 | adantr 481 |
. . . . . 6
β’ ((π β§ ( β₯ βπ) β π΄) β π β LMod) |
24 | | simpr 485 |
. . . . . 6
β’ ((π β§ ( β₯ βπ) β π΄) β ( β₯ βπ) β π΄) |
25 | 22, 9, 23, 24 | lsatn0 37857 |
. . . . 5
β’ ((π β§ ( β₯ βπ) β π΄) β ( β₯ βπ) β
{(0gβπ)}) |
26 | 25 | neneqd 2945 |
. . . 4
β’ ((π β§ ( β₯ βπ) β π΄) β Β¬ ( β₯ βπ) = {(0gβπ)}) |
27 | 11 | adantr 481 |
. . . . . . 7
β’ ((π β§ ( β₯ βπ) β π΄) β (πΎ β HL β§ π β π»)) |
28 | 5, 7, 6, 14, 22 | doch0 40217 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π») β ( β₯
β{(0gβπ)}) = (Baseβπ)) |
29 | 27, 28 | syl 17 |
. . . . . 6
β’ ((π β§ ( β₯ βπ) β π΄) β ( β₯
β{(0gβπ)}) = (Baseβπ)) |
30 | 29 | eqeq2d 2743 |
. . . . 5
β’ ((π β§ ( β₯ βπ) β π΄) β (( β₯ β( β₯
βπ)) = ( β₯
β{(0gβπ)}) β ( β₯ β( β₯
βπ)) =
(Baseβπ))) |
31 | | eqid 2732 |
. . . . . . 7
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
32 | 5, 31, 7, 14, 6 | dochcl 40212 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ π β (Baseβπ)) β ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) |
33 | 11, 16, 32 | syl2anc 584 |
. . . . . . 7
β’ (π β ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) |
34 | 5, 31, 7, 22 | dih0rn 40143 |
. . . . . . . 8
β’ ((πΎ β HL β§ π β π») β {(0gβπ)} β ran
((DIsoHβπΎ)βπ)) |
35 | 11, 34 | syl 17 |
. . . . . . 7
β’ (π β
{(0gβπ)}
β ran ((DIsoHβπΎ)βπ)) |
36 | 5, 31, 6, 11, 33, 35 | doch11 40232 |
. . . . . 6
β’ (π β (( β₯ β( β₯
βπ)) = ( β₯
β{(0gβπ)}) β ( β₯ βπ) = {(0gβπ)})) |
37 | 36 | adantr 481 |
. . . . 5
β’ ((π β§ ( β₯ βπ) β π΄) β (( β₯ β( β₯
βπ)) = ( β₯
β{(0gβπ)}) β ( β₯ βπ) = {(0gβπ)})) |
38 | 30, 37 | bitr3d 280 |
. . . 4
β’ ((π β§ ( β₯ βπ) β π΄) β (( β₯ β( β₯
βπ)) =
(Baseβπ) β (
β₯
βπ) =
{(0gβπ)})) |
39 | 26, 38 | mtbird 324 |
. . 3
β’ ((π β§ ( β₯ βπ) β π΄) β Β¬ ( β₯ β( β₯
βπ)) =
(Baseβπ)) |
40 | 5, 6, 7, 14, 10, 11, 2 | dochshpncl 40243 |
. . . . 5
β’ (π β (( β₯ β( β₯
βπ)) β π β ( β₯ β( β₯
βπ)) =
(Baseβπ))) |
41 | 40 | necon1bbid 2980 |
. . . 4
β’ (π β (Β¬ ( β₯
β( β₯ βπ)) = (Baseβπ) β ( β₯ β( β₯
βπ)) = π)) |
42 | 41 | adantr 481 |
. . 3
β’ ((π β§ ( β₯ βπ) β π΄) β (Β¬ ( β₯ β( β₯
βπ)) =
(Baseβπ) β (
β₯
β( β₯ βπ)) = π)) |
43 | 39, 42 | mpbid 231 |
. 2
β’ ((π β§ ( β₯ βπ) β π΄) β ( β₯ β( β₯
βπ)) = π) |
44 | 21, 43 | impbida 799 |
1
β’ (π β (( β₯ β( β₯
βπ)) = π β ( β₯ βπ) β π΄)) |