Step | Hyp | Ref
| Expression |
1 | | aks6d1c6.18 |
. . . . . . . . . . . 12
⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) |
2 | | aks6d1c6.6 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
3 | | aks6d1c6.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℙ) |
4 | | aks6d1c6.7 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
5 | | aks6d1c6.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ ℕ) |
6 | | aks6d1c6.8 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
7 | | aks6d1c6.12 |
. . . . . . . . . . . . 13
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
8 | | aks6d1c6.13 |
. . . . . . . . . . . . 13
⊢ 𝐿 =
(ℤRHom‘(ℤ/nℤ‘𝑅)) |
9 | | eqid 2725 |
. . . . . . . . . . . . 13
⊢
(ℤ/nℤ‘𝑅) = (ℤ/nℤ‘𝑅) |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | hashscontpowcl 41720 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) |
11 | 1, 10 | eqeltrid 2829 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
12 | 11 | nn0zd 12617 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ ℤ) |
13 | 12 | zcnd 12700 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ℂ) |
14 | | 1cnd 11241 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
15 | | aks6d1c6.11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
16 | 15 | nn0cnd 12567 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
17 | 13, 14, 16 | nppcan3d 11630 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷 − 1) + (𝐴 + 1)) = (𝐷 + 𝐴)) |
18 | 17 | eqcomd 2731 |
. . . . . . 7
⊢ (𝜑 → (𝐷 + 𝐴) = ((𝐷 − 1) + (𝐴 + 1))) |
19 | | hashfz0 14427 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ0
→ (♯‘(0...𝐴)) = (𝐴 + 1)) |
20 | 15, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘(0...𝐴)) = (𝐴 + 1)) |
21 | 20 | eqcomd 2731 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 + 1) = (♯‘(0...𝐴))) |
22 | 21 | oveq2d 7435 |
. . . . . . 7
⊢ (𝜑 → ((𝐷 − 1) + (𝐴 + 1)) = ((𝐷 − 1) + (♯‘(0...𝐴)))) |
23 | 18, 22 | eqtrd 2765 |
. . . . . 6
⊢ (𝜑 → (𝐷 + 𝐴) = ((𝐷 − 1) + (♯‘(0...𝐴)))) |
24 | | 1zzd 12626 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℤ) |
25 | 12, 24 | zsubcld 12704 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 − 1) ∈ ℤ) |
26 | | 0p1e1 12367 |
. . . . . . . . . . . 12
⊢ (0 + 1) =
1 |
27 | 26 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 + 1) =
1) |
28 | | fvexd 6911 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(ℤRHom‘(ℤ/nℤ‘𝑅)) ∈ V) |
29 | 8, 28 | eqeltrid 2829 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ V) |
30 | 29 | imaexd 7924 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ∈ V) |
31 | 15 | ne0d 4335 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℕ0 ≠
∅) |
32 | 31, 31 | jca 510 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℕ0 ≠
∅ ∧ ℕ0 ≠ ∅)) |
33 | | xpnz 6165 |
. . . . . . . . . . . . . . 15
⊢
((ℕ0 ≠ ∅ ∧ ℕ0 ≠
∅) ↔ (ℕ0 × ℕ0) ≠
∅) |
34 | 32, 33 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℕ0
× ℕ0) ≠ ∅) |
35 | | ovexd 7454 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0)
→ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ V) |
36 | 35 | ralrimiva 3135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
∀𝑙 ∈
ℕ0 ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ V) |
37 | 36 | ralrimiva 3135 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 ∀𝑙 ∈ ℕ0
((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ V) |
38 | 7 | fnmpo 8074 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
ℕ0 ∀𝑙 ∈ ℕ0 ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ V → 𝐸 Fn (ℕ0 ×
ℕ0)) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 Fn (ℕ0 ×
ℕ0)) |
40 | | ssidd 4000 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℕ0
× ℕ0) ⊆ (ℕ0 ×
ℕ0)) |
41 | | fnimaeq0 6689 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸 Fn (ℕ0 ×
ℕ0) ∧ (ℕ0 × ℕ0)
⊆ (ℕ0 × ℕ0)) → ((𝐸 “ (ℕ0
× ℕ0)) = ∅ ↔ (ℕ0 ×
ℕ0) = ∅)) |
42 | 39, 40, 41 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐸 “ (ℕ0 ×
ℕ0)) = ∅ ↔ (ℕ0 ×
ℕ0) = ∅)) |
43 | 42 | necon3bid 2974 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐸 “ (ℕ0 ×
ℕ0)) ≠ ∅ ↔ (ℕ0 ×
ℕ0) ≠ ∅)) |
44 | 34, 43 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) ≠ ∅) |
45 | 5 | nnnn0d 12565 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
46 | 9 | zncrng 21495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℕ0
→ (ℤ/nℤ‘𝑅) ∈ CRing) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(ℤ/nℤ‘𝑅) ∈ CRing) |
48 | | crngring 20197 |
. . . . . . . . . . . . . . . . 17
⊢
((ℤ/nℤ‘𝑅) ∈ CRing →
(ℤ/nℤ‘𝑅) ∈ Ring) |
49 | 8 | zrhrhm 21454 |
. . . . . . . . . . . . . . . . 17
⊢
((ℤ/nℤ‘𝑅) ∈ Ring → 𝐿 ∈ (ℤring RingHom
(ℤ/nℤ‘𝑅))) |
50 | | zringbas 21396 |
. . . . . . . . . . . . . . . . . 18
⊢ ℤ =
(Base‘ℤring) |
51 | | eqid 2725 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘(ℤ/nℤ‘𝑅)) =
(Base‘(ℤ/nℤ‘𝑅)) |
52 | 50, 51 | rhmf 20436 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐿 ∈ (ℤring
RingHom (ℤ/nℤ‘𝑅)) → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) |
53 | 47, 48, 49, 52 | 4syl 19 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘(ℤ/nℤ‘𝑅))) |
54 | 53 | ffnd 6724 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐿 Fn ℤ) |
55 | 7 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ 𝐸 = (𝑘 ∈ ℕ0,
𝑙 ∈
ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)))) |
56 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
∧ (𝑘 = 𝑥 ∧ 𝑙 = 𝑦)) → 𝑘 = 𝑥) |
57 | 56 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
∧ (𝑘 = 𝑥 ∧ 𝑙 = 𝑦)) → (𝑃↑𝑘) = (𝑃↑𝑥)) |
58 | | simprr 771 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
∧ (𝑘 = 𝑥 ∧ 𝑙 = 𝑦)) → 𝑙 = 𝑦) |
59 | 58 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
∧ (𝑘 = 𝑥 ∧ 𝑙 = 𝑦)) → ((𝑁 / 𝑃)↑𝑙) = ((𝑁 / 𝑃)↑𝑦)) |
60 | 57, 59 | oveq12d 7437 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
∧ (𝑘 = 𝑥 ∧ 𝑙 = 𝑦)) → ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) = ((𝑃↑𝑥) · ((𝑁 / 𝑃)↑𝑦))) |
61 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ 𝑥 ∈
ℕ0) |
62 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℕ0) |
63 | | ovexd 7454 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃↑𝑥) · ((𝑁 / 𝑃)↑𝑦)) ∈ V) |
64 | 55, 60, 61, 62, 63 | ovmpod 7573 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ (𝑥𝐸𝑦) = ((𝑃↑𝑥) · ((𝑁 / 𝑃)↑𝑦))) |
65 | 3 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ 𝑃 ∈
ℙ) |
66 | | prmnn 16648 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ 𝑃 ∈
ℕ) |
68 | 67 | nnzd 12618 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ 𝑃 ∈
ℤ) |
69 | 68, 61 | zexpcld 14088 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ (𝑃↑𝑥) ∈
ℤ) |
70 | 4 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ 𝑃 ∥ 𝑁) |
71 | 67 | nnne0d 12295 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ 𝑃 ≠
0) |
72 | 2 | nnzd 12618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑁 ∈ ℤ) |
73 | 72 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈
ℤ) |
74 | 73 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
75 | | dvdsval2 16237 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
76 | 68, 71, 74, 75 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
77 | 70, 76 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ (𝑁 / 𝑃) ∈
ℤ) |
78 | 77, 62 | zexpcld 14088 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ ((𝑁 / 𝑃)↑𝑦) ∈ ℤ) |
79 | 69, 78 | zmulcld 12705 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃↑𝑥) · ((𝑁 / 𝑃)↑𝑦)) ∈ ℤ) |
80 | 64, 79 | eqeltrd 2825 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ 𝑦 ∈ ℕ0)
→ (𝑥𝐸𝑦) ∈ ℤ) |
81 | 80 | ralrimiva 3135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) →
∀𝑦 ∈
ℕ0 (𝑥𝐸𝑦) ∈ ℤ) |
82 | 81 | ralrimiva 3135 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0
(𝑥𝐸𝑦) ∈ ℤ) |
83 | 39, 82 | jca 510 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐸 Fn (ℕ0 ×
ℕ0) ∧ ∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0
(𝑥𝐸𝑦) ∈ ℤ)) |
84 | | ffnov 7547 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐸:(ℕ0 ×
ℕ0)⟶ℤ ↔ (𝐸 Fn (ℕ0 ×
ℕ0) ∧ ∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0
(𝑥𝐸𝑦) ∈ ℤ)) |
85 | 83, 84 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℤ) |
86 | | frn 6730 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐸:(ℕ0 ×
ℕ0)⟶ℤ → ran 𝐸 ⊆ ℤ) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ran 𝐸 ⊆ ℤ) |
88 | | fnima 6686 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐸 Fn (ℕ0 ×
ℕ0) → (𝐸 “ (ℕ0 ×
ℕ0)) = ran 𝐸) |
89 | 39, 88 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) = ran 𝐸) |
90 | 89 | sseq1d 4008 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐸 “ (ℕ0 ×
ℕ0)) ⊆ ℤ ↔ ran 𝐸 ⊆ ℤ)) |
91 | 87, 90 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) ⊆ ℤ) |
92 | | fnimaeq0 6689 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 Fn ℤ ∧ (𝐸 “ (ℕ0
× ℕ0)) ⊆ ℤ) → ((𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) = ∅ ↔ (𝐸 “ (ℕ0 ×
ℕ0)) = ∅)) |
93 | 54, 91, 92 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) = ∅ ↔ (𝐸 “ (ℕ0 ×
ℕ0)) = ∅)) |
94 | 93 | necon3bid 2974 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ≠ ∅ ↔ (𝐸 “ (ℕ0 ×
ℕ0)) ≠ ∅)) |
95 | 44, 94 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ≠ ∅) |
96 | | hashge1 14384 |
. . . . . . . . . . . . 13
⊢ (((𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ∈ V ∧ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ≠ ∅) → 1 ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
97 | 1 | eqcomi 2734 |
. . . . . . . . . . . . . 14
⊢
(♯‘(𝐿
“ (𝐸 “
(ℕ0 × ℕ0)))) = 𝐷 |
98 | 97 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ∈ V ∧ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ≠ ∅) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) = 𝐷) |
99 | 96, 98 | breqtrd 5175 |
. . . . . . . . . . . 12
⊢ (((𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ∈ V ∧ (𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))) ≠ ∅) → 1 ≤ 𝐷) |
100 | 30, 95, 99 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ≤ 𝐷) |
101 | 27, 100 | eqbrtrd 5171 |
. . . . . . . . . 10
⊢ (𝜑 → (0 + 1) ≤ 𝐷) |
102 | | 0red 11249 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℝ) |
103 | | 1red 11247 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℝ) |
104 | 11 | nn0red 12566 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ ℝ) |
105 | | leaddsub 11722 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 + 1) ≤ 𝐷 ↔ 0 ≤ (𝐷 − 1))) |
106 | 102, 103,
104, 105 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (𝜑 → ((0 + 1) ≤ 𝐷 ↔ 0 ≤ (𝐷 − 1))) |
107 | 101, 106 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝐷 − 1)) |
108 | 25, 107 | jca 510 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷 − 1) ∈ ℤ ∧ 0 ≤
(𝐷 −
1))) |
109 | | elnn0z 12604 |
. . . . . . . 8
⊢ ((𝐷 − 1) ∈
ℕ0 ↔ ((𝐷 − 1) ∈ ℤ ∧ 0 ≤
(𝐷 −
1))) |
110 | 108, 109 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → (𝐷 − 1) ∈
ℕ0) |
111 | | fzfid 13974 |
. . . . . . . 8
⊢ (𝜑 → (0...𝐴) ∈ Fin) |
112 | | hashcl 14351 |
. . . . . . . 8
⊢
((0...𝐴) ∈ Fin
→ (♯‘(0...𝐴)) ∈
ℕ0) |
113 | 111, 112 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (♯‘(0...𝐴)) ∈
ℕ0) |
114 | 110, 113 | nn0addcld 12569 |
. . . . . 6
⊢ (𝜑 → ((𝐷 − 1) + (♯‘(0...𝐴))) ∈
ℕ0) |
115 | 23, 114 | eqeltrd 2825 |
. . . . 5
⊢ (𝜑 → (𝐷 + 𝐴) ∈
ℕ0) |
116 | | bccl 14317 |
. . . . 5
⊢ (((𝐷 + 𝐴) ∈ ℕ0 ∧ (𝐷 − 1) ∈ ℤ)
→ ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℕ0) |
117 | 115, 25, 116 | syl2anc 582 |
. . . 4
⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℕ0) |
118 | 117 | nn0red 12566 |
. . 3
⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℝ) |
119 | 118 | rexrd 11296 |
. 2
⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ∈
ℝ*) |
120 | | aks6d1c6.17 |
. . . . . . 7
⊢ 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) |
121 | | ovexd 7454 |
. . . . . . . 8
⊢ (𝜑 → (ℕ0
↑m (0...𝐴))
∈ V) |
122 | 121 | mptexd 7236 |
. . . . . . 7
⊢ (𝜑 → (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) ∈ V) |
123 | 120, 122 | eqeltrid 2829 |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ V) |
124 | 123 | imaexd 7924 |
. . . . 5
⊢ (𝜑 → (𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V) |
125 | | simprl 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑤‘𝑡) ≤ (𝐷 − 1))) → 𝑤 ∈ (ℕ0
↑m (0...𝐴))) |
126 | 125 | ex 411 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑤 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑤‘𝑡) ≤ (𝐷 − 1)) → 𝑤 ∈ (ℕ0
↑m (0...𝐴)))) |
127 | | simpl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = 𝑤 ∧ 𝑡 ∈ (0...𝐴)) → 𝑠 = 𝑤) |
128 | 127 | fveq1d 6898 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = 𝑤 ∧ 𝑡 ∈ (0...𝐴)) → (𝑠‘𝑡) = (𝑤‘𝑡)) |
129 | 128 | sumeq2dv 15685 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑤 → Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) = Σ𝑡 ∈ (0...𝐴)(𝑤‘𝑡)) |
130 | 129 | breq1d 5159 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1) ↔ Σ𝑡 ∈ (0...𝐴)(𝑤‘𝑡) ≤ (𝐷 − 1))) |
131 | 130 | elrab 3679 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} ↔ (𝑤 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑤‘𝑡) ≤ (𝐷 − 1))) |
132 | 131 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} ↔ (𝑤 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑤‘𝑡) ≤ (𝐷 − 1)))) |
133 | 132 | biimpd 228 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} → (𝑤 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑤‘𝑡) ≤ (𝐷 − 1)))) |
134 | 133 | imim1d 82 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑤 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑤‘𝑡) ≤ (𝐷 − 1)) → 𝑤 ∈ (ℕ0
↑m (0...𝐴))) → (𝑤 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} → 𝑤 ∈ (ℕ0
↑m (0...𝐴))))) |
135 | 126, 134 | mpd 15 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} → 𝑤 ∈ (ℕ0
↑m (0...𝐴)))) |
136 | 135 | ssrdv 3982 |
. . . . . . 7
⊢ (𝜑 → {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0
↑m (0...𝐴))) |
137 | | aks6d1c6.19 |
. . . . . . . . 9
⊢ 𝑆 = {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} |
138 | 137 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 = {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)}) |
139 | 138 | sseq1d 4008 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ⊆ (ℕ0
↑m (0...𝐴))
↔ {𝑠 ∈
(ℕ0 ↑m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0
↑m (0...𝐴)))) |
140 | 136, 139 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ (ℕ0
↑m (0...𝐴))) |
141 | | imass2 6107 |
. . . . . 6
⊢ (𝑆 ⊆ (ℕ0
↑m (0...𝐴))
→ (𝐻 “ 𝑆) ⊆ (𝐻 “ (ℕ0
↑m (0...𝐴)))) |
142 | 140, 141 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐻 “ 𝑆) ⊆ (𝐻 “ (ℕ0
↑m (0...𝐴)))) |
143 | 124, 142 | ssexd 5325 |
. . . 4
⊢ (𝜑 → (𝐻 “ 𝑆) ∈ V) |
144 | | hashxnn0 14334 |
. . . 4
⊢ ((𝐻 “ 𝑆) ∈ V → (♯‘(𝐻 “ 𝑆)) ∈
ℕ0*) |
145 | 143, 144 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘(𝐻 “ 𝑆)) ∈
ℕ0*) |
146 | | xnn0xr 12582 |
. . 3
⊢
((♯‘(𝐻
“ 𝑆)) ∈
ℕ0* → (♯‘(𝐻 “ 𝑆)) ∈
ℝ*) |
147 | 145, 146 | syl 17 |
. 2
⊢ (𝜑 → (♯‘(𝐻 “ 𝑆)) ∈
ℝ*) |
148 | | hashxnn0 14334 |
. . . 4
⊢ ((𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℕ0*) |
149 | 124, 148 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℕ0*) |
150 | | xnn0xr 12582 |
. . 3
⊢
((♯‘(𝐻
“ (ℕ0 ↑m (0...𝐴)))) ∈ ℕ0*
→ (♯‘(𝐻
“ (ℕ0 ↑m (0...𝐴)))) ∈
ℝ*) |
151 | 149, 150 | syl 17 |
. 2
⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴)))) ∈
ℝ*) |
152 | 110 | nn0cnd 12567 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 − 1) ∈ ℂ) |
153 | 113 | nn0cnd 12567 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘(0...𝐴)) ∈
ℂ) |
154 | 152, 153 | pncand 11604 |
. . . . . . . 8
⊢ (𝜑 → (((𝐷 − 1) + (♯‘(0...𝐴))) −
(♯‘(0...𝐴))) =
(𝐷 −
1)) |
155 | 154 | eqcomd 2731 |
. . . . . . 7
⊢ (𝜑 → (𝐷 − 1) = (((𝐷 − 1) + (♯‘(0...𝐴))) −
(♯‘(0...𝐴)))) |
156 | 23, 155 | oveq12d 7437 |
. . . . . 6
⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) = (((𝐷 − 1) + (♯‘(0...𝐴)))C(((𝐷 − 1) + (♯‘(0...𝐴))) −
(♯‘(0...𝐴))))) |
157 | 15 | nn0ge0d 12568 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ 𝐴) |
158 | | 0zd 12603 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
ℤ) |
159 | 15 | nn0zd 12617 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℤ) |
160 | | eluz 12869 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℤ ∧ 𝐴
∈ ℤ) → (𝐴
∈ (ℤ≥‘0) ↔ 0 ≤ 𝐴)) |
161 | 158, 159,
160 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∈ (ℤ≥‘0)
↔ 0 ≤ 𝐴)) |
162 | 157, 161 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
(ℤ≥‘0)) |
163 | | fzn0 13550 |
. . . . . . . . . 10
⊢
((0...𝐴) ≠
∅ ↔ 𝐴 ∈
(ℤ≥‘0)) |
164 | 162, 163 | sylibr 233 |
. . . . . . . . 9
⊢ (𝜑 → (0...𝐴) ≠ ∅) |
165 | 110, 111,
164, 137 | sticksstones23 41769 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝑆) = (((𝐷 − 1) + (♯‘(0...𝐴)))C(♯‘(0...𝐴)))) |
166 | 113 | nn0zd 12617 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘(0...𝐴)) ∈
ℤ) |
167 | | bccmpl 14304 |
. . . . . . . . 9
⊢ ((((𝐷 − 1) +
(♯‘(0...𝐴)))
∈ ℕ0 ∧ (♯‘(0...𝐴)) ∈ ℤ) → (((𝐷 − 1) +
(♯‘(0...𝐴)))C(♯‘(0...𝐴))) = (((𝐷 − 1) + (♯‘(0...𝐴)))C(((𝐷 − 1) + (♯‘(0...𝐴))) −
(♯‘(0...𝐴))))) |
168 | 114, 166,
167 | syl2anc 582 |
. . . . . . . 8
⊢ (𝜑 → (((𝐷 − 1) + (♯‘(0...𝐴)))C(♯‘(0...𝐴))) = (((𝐷 − 1) + (♯‘(0...𝐴)))C(((𝐷 − 1) + (♯‘(0...𝐴))) −
(♯‘(0...𝐴))))) |
169 | 165, 168 | eqtrd 2765 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑆) = (((𝐷 − 1) + (♯‘(0...𝐴)))C(((𝐷 − 1) + (♯‘(0...𝐴))) −
(♯‘(0...𝐴))))) |
170 | 169 | eqcomd 2731 |
. . . . . 6
⊢ (𝜑 → (((𝐷 − 1) + (♯‘(0...𝐴)))C(((𝐷 − 1) + (♯‘(0...𝐴))) −
(♯‘(0...𝐴)))) =
(♯‘𝑆)) |
171 | 156, 170 | eqtrd 2765 |
. . . . 5
⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) = (♯‘𝑆)) |
172 | 171 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → ((𝐷 + 𝐴)C(𝐷 − 1)) = (♯‘𝑆)) |
173 | 120 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀))) |
174 | | ovexd 7454 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → (ℕ0
↑m (0...𝐴))
∈ V) |
175 | 174 | mptexd 7236 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) ∈ V) |
176 | 173, 175 | eqeltrd 2825 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → 𝐻 ∈ V) |
177 | 176 | resexd 6033 |
. . . . 5
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → (𝐻 ↾ 𝑆) ∈ V) |
178 | 176 | imaexd 7924 |
. . . . 5
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → (𝐻 “ 𝑆) ∈ V) |
179 | | simpr 483 |
. . . . 5
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) |
180 | | hashf1dmcdm 14439 |
. . . . 5
⊢ (((𝐻 ↾ 𝑆) ∈ V ∧ (𝐻 “ 𝑆) ∈ V ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → (♯‘𝑆) ≤ (♯‘(𝐻 “ 𝑆))) |
181 | 177, 178,
179, 180 | syl3anc 1368 |
. . . 4
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → (♯‘𝑆) ≤ (♯‘(𝐻 “ 𝑆))) |
182 | 172, 181 | eqbrtrd 5171 |
. . 3
⊢ ((𝜑 ∧ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) |
183 | 120 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐻 = (ℎ ∈ (ℕ0
↑m (0...𝐴))
↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀))) |
184 | | simpr 483 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ ℎ = 𝑗) → ℎ = 𝑗) |
185 | 184 | fveq2d 6900 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ ℎ = 𝑗) → (𝐺‘ℎ) = (𝐺‘𝑗)) |
186 | 185 | fveq2d 6900 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ ℎ = 𝑗) → ((eval1‘𝐾)‘(𝐺‘ℎ)) = ((eval1‘𝐾)‘(𝐺‘𝑗))) |
187 | 186 | fveq1d 6898 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ ℎ = 𝑗) → (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀) = (((eval1‘𝐾)‘(𝐺‘𝑗))‘𝑀)) |
188 | | simp2 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑠 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)) → 𝑠 ∈ (ℕ0
↑m (0...𝐴))) |
189 | 188 | rabssdv 4068 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} ⊆ (ℕ0
↑m (0...𝐴))) |
190 | 137, 189 | eqsstrid 4025 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 ⊆ (ℕ0
↑m (0...𝐴))) |
191 | 190 | sselda 3976 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝑗 ∈ (ℕ0
↑m (0...𝐴))) |
192 | | fvexd 6911 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (((eval1‘𝐾)‘(𝐺‘𝑗))‘𝑀) ∈ V) |
193 | 183, 187,
191, 192 | fvmptd 7011 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐻‘𝑗) = (((eval1‘𝐾)‘(𝐺‘𝑗))‘𝑀)) |
194 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢
(eval1‘𝐾) = (eval1‘𝐾) |
195 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢
(Poly1‘𝐾) = (Poly1‘𝐾) |
196 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐾) =
(Base‘𝐾) |
197 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘(Poly1‘𝐾)) =
(Base‘(Poly1‘𝐾)) |
198 | | aks6d1c6.3 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐾 ∈ Field) |
199 | 198 | fldcrngd 20649 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ CRing) |
200 | 199 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐾 ∈ CRing) |
201 | | aks6d1c6.16 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
202 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
203 | 202 | crngmgp 20193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐾 ∈ CRing →
(mulGrp‘𝐾) ∈
CMnd) |
204 | 199, 203 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (mulGrp‘𝐾) ∈ CMnd) |
205 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(.g‘(mulGrp‘𝐾)) =
(.g‘(mulGrp‘𝐾)) |
206 | 204, 45, 205 | isprimroot 41693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) ↔ (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣)))) |
207 | 206 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅) → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣)))) |
208 | 201, 207 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 ∈ (Base‘(mulGrp‘𝐾)) ∧ (𝑅(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) ∧ ∀𝑣 ∈ ℕ0
((𝑣(.g‘(mulGrp‘𝐾))𝑀) = (0g‘(mulGrp‘𝐾)) → 𝑅 ∥ 𝑣))) |
209 | 208 | simp1d 1139 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈ (Base‘(mulGrp‘𝐾))) |
210 | 202, 196 | mgpbas 20092 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) |
211 | 210 | eqcomi 2734 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘(mulGrp‘𝐾)) = (Base‘𝐾) |
212 | 209, 211 | eleqtrdi 2835 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) |
213 | 212 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝑀 ∈ (Base‘𝐾)) |
214 | | aks6d1c6.2 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑃 = (chr‘𝐾) |
215 | | aks6d1c6.9 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 < 𝑃) |
216 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . 19
⊢
(var1‘𝐾) = (var1‘𝐾) |
217 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . 19
⊢
(.g‘(mulGrp‘(Poly1‘𝐾))) =
(.g‘(mulGrp‘(Poly1‘𝐾))) |
218 | | aks6d1c6.10 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐺 = (𝑔 ∈ (ℕ0
↑m (0...𝐴))
↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
219 | 198, 3, 214, 15, 215, 216, 217, 218 | aks6d1c5lem0 41735 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺:(ℕ0 ↑m
(0...𝐴))⟶(Base‘(Poly1‘𝐾))) |
220 | 219 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐺:(ℕ0 ↑m
(0...𝐴))⟶(Base‘(Poly1‘𝐾))) |
221 | 220, 191 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐺‘𝑗) ∈
(Base‘(Poly1‘𝐾))) |
222 | 194, 195,
196, 197, 200, 213, 221 | fveval1fvcl 22277 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (((eval1‘𝐾)‘(𝐺‘𝑗))‘𝑀) ∈ (Base‘𝐾)) |
223 | 193, 222 | eqeltrd 2825 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐻‘𝑗) ∈ (Base‘𝐾)) |
224 | | eqid 2725 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ 𝑆 ↦ (𝐻‘𝑗)) = (𝑗 ∈ 𝑆 ↦ (𝐻‘𝑗)) |
225 | 223, 224 | fmptd 7123 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ 𝑆 ↦ (𝐻‘𝑗)):𝑆⟶(Base‘𝐾)) |
226 | | fvexd 6911 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ℎ ∈ (ℕ0
↑m (0...𝐴))) → (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀) ∈ V) |
227 | 226, 120 | fmptd 7123 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐻:(ℕ0 ↑m
(0...𝐴))⟶V) |
228 | 227, 190 | feqresmpt 6967 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐻 ↾ 𝑆) = (𝑗 ∈ 𝑆 ↦ (𝐻‘𝑗))) |
229 | 228 | feq1d 6708 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐻 ↾ 𝑆):𝑆⟶(Base‘𝐾) ↔ (𝑗 ∈ 𝑆 ↦ (𝐻‘𝑗)):𝑆⟶(Base‘𝐾))) |
230 | 225, 229 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐻 ↾ 𝑆):𝑆⟶(Base‘𝐾)) |
231 | | ffrn 6736 |
. . . . . . . . . . . 12
⊢ ((𝐻 ↾ 𝑆):𝑆⟶(Base‘𝐾) → (𝐻 ↾ 𝑆):𝑆⟶ran (𝐻 ↾ 𝑆)) |
232 | 230, 231 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐻 ↾ 𝑆):𝑆⟶ran (𝐻 ↾ 𝑆)) |
233 | | df-ima 5691 |
. . . . . . . . . . . . 13
⊢ (𝐻 “ 𝑆) = ran (𝐻 ↾ 𝑆) |
234 | 233 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐻 “ 𝑆) = ran (𝐻 ↾ 𝑆)) |
235 | 234 | feq3d 6710 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ↔ (𝐻 ↾ 𝑆):𝑆⟶ran (𝐻 ↾ 𝑆))) |
236 | 232, 235 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆)) |
237 | 236 | notnotd 144 |
. . . . . . . . 9
⊢ (𝜑 → ¬ ¬ (𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆)) |
238 | 237 | a1d 25 |
. . . . . . . 8
⊢ (𝜑 → (¬ ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)) → ¬ ¬ (𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆))) |
239 | 238 | con4d 115 |
. . . . . . 7
⊢ (𝜑 → (¬ (𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)))) |
240 | | df-an 395 |
. . . . . . . . . . . . . 14
⊢ ((((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣) ↔ ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → ¬ ¬ 𝑢 = 𝑣)) |
241 | 240 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) → ((((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣) ↔ ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → ¬ ¬ 𝑢 = 𝑣))) |
242 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢ (
deg1 ‘𝐾) =
( deg1 ‘𝐾) |
243 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝐾) = (0g‘𝐾) |
244 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘(Poly1‘𝐾)) =
(0g‘(Poly1‘𝐾)) |
245 | | fldidom 21275 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ Field → 𝐾 ∈ IDomn) |
246 | 198, 245 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ IDomn) |
247 | 246 | ad4antr 730 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐾 ∈ IDomn) |
248 | 195 | ply1crng 22141 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ CRing →
(Poly1‘𝐾)
∈ CRing) |
249 | | crngring 20197 |
. . . . . . . . . . . . . . . . . . 19
⊢
((Poly1‘𝐾) ∈ CRing →
(Poly1‘𝐾)
∈ Ring) |
250 | | ringgrp 20190 |
. . . . . . . . . . . . . . . . . . 19
⊢
((Poly1‘𝐾) ∈ Ring →
(Poly1‘𝐾)
∈ Grp) |
251 | 199, 248,
249, 250 | 4syl 19 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(Poly1‘𝐾)
∈ Grp) |
252 | 251 | ad4antr 730 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (Poly1‘𝐾) ∈ Grp) |
253 | 198, 3, 214, 15, 215, 216, 217, 218 | aks6d1c5 41739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺:(ℕ0 ↑m
(0...𝐴))–1-1→(Base‘(Poly1‘𝐾))) |
254 | 253 | ad4antr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐺:(ℕ0 ↑m
(0...𝐴))–1-1→(Base‘(Poly1‘𝐾))) |
255 | | f1f 6793 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺:(ℕ0
↑m (0...𝐴))–1-1→(Base‘(Poly1‘𝐾)) → 𝐺:(ℕ0 ↑m
(0...𝐴))⟶(Base‘(Poly1‘𝐾))) |
256 | 254, 255 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐺:(ℕ0 ↑m
(0...𝐴))⟶(Base‘(Poly1‘𝐾))) |
257 | 137 | eleq2i 2817 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∈ 𝑆 ↔ 𝑢 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)}) |
258 | | simpl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑠 = 𝑢 ∧ 𝑡 ∈ (0...𝐴)) → 𝑠 = 𝑢) |
259 | 258 | fveq1d 6898 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑠 = 𝑢 ∧ 𝑡 ∈ (0...𝐴)) → (𝑠‘𝑡) = (𝑢‘𝑡)) |
260 | 259 | sumeq2dv 15685 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 = 𝑢 → Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) = Σ𝑡 ∈ (0...𝐴)(𝑢‘𝑡)) |
261 | 260 | breq1d 5159 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 = 𝑢 → (Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1) ↔ Σ𝑡 ∈ (0...𝐴)(𝑢‘𝑡) ≤ (𝐷 − 1))) |
262 | 261 | elrab 3679 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} ↔ (𝑢 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑢‘𝑡) ≤ (𝐷 − 1))) |
263 | 262 | simplbi 496 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} → 𝑢 ∈ (ℕ0
↑m (0...𝐴))) |
264 | 257, 263 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ 𝑆 → 𝑢 ∈ (ℕ0
↑m (0...𝐴))) |
265 | 264 | adantl 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) → 𝑢 ∈ (ℕ0
↑m (0...𝐴))) |
266 | 265 | adantr 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) → 𝑢 ∈ (ℕ0
↑m (0...𝐴))) |
267 | 266 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑢 ∈ (ℕ0
↑m (0...𝐴))) |
268 | 256, 267 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝐺‘𝑢) ∈
(Base‘(Poly1‘𝐾))) |
269 | 137 | eleq2i 2817 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ 𝑆 ↔ 𝑣 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)}) |
270 | | elrabi 3673 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} → 𝑣 ∈ (ℕ0
↑m (0...𝐴))) |
271 | 269, 270 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ 𝑆 → 𝑣 ∈ (ℕ0
↑m (0...𝐴))) |
272 | 271 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) → 𝑣 ∈ (ℕ0
↑m (0...𝐴))) |
273 | 272 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑣 ∈ (ℕ0
↑m (0...𝐴))) |
274 | 256, 273 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝐺‘𝑣) ∈
(Base‘(Poly1‘𝐾))) |
275 | | eqid 2725 |
. . . . . . . . . . . . . . . . . 18
⊢
(-g‘(Poly1‘𝐾)) =
(-g‘(Poly1‘𝐾)) |
276 | 197, 275 | grpsubcl 18984 |
. . . . . . . . . . . . . . . . 17
⊢
(((Poly1‘𝐾) ∈ Grp ∧ (𝐺‘𝑢) ∈
(Base‘(Poly1‘𝐾)) ∧ (𝐺‘𝑣) ∈
(Base‘(Poly1‘𝐾))) → ((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) ∈ (Base‘(Poly1‘𝐾))) |
277 | 252, 268,
274, 276 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) ∈ (Base‘(Poly1‘𝐾))) |
278 | | neqne 2937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑢 = 𝑣 → 𝑢 ≠ 𝑣) |
279 | 278 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣) → 𝑢 ≠ 𝑣) |
280 | 279 | adantl 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑢 ≠ 𝑣) |
281 | 267, 273 | jca 510 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 ∈ (ℕ0
↑m (0...𝐴))
∧ 𝑣 ∈
(ℕ0 ↑m (0...𝐴)))) |
282 | | f1fveq 7272 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺:(ℕ0
↑m (0...𝐴))–1-1→(Base‘(Poly1‘𝐾)) ∧ (𝑢 ∈ (ℕ0
↑m (0...𝐴))
∧ 𝑣 ∈
(ℕ0 ↑m (0...𝐴)))) → ((𝐺‘𝑢) = (𝐺‘𝑣) ↔ 𝑢 = 𝑣)) |
283 | 254, 281,
282 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ((𝐺‘𝑢) = (𝐺‘𝑣) ↔ 𝑢 = 𝑣)) |
284 | 283 | bicomd 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 = 𝑣 ↔ (𝐺‘𝑢) = (𝐺‘𝑣))) |
285 | 284 | necon3bid 2974 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 ≠ 𝑣 ↔ (𝐺‘𝑢) ≠ (𝐺‘𝑣))) |
286 | 285 | biimpd 228 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 ≠ 𝑣 → (𝐺‘𝑢) ≠ (𝐺‘𝑣))) |
287 | 280, 286 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝐺‘𝑢) ≠ (𝐺‘𝑣)) |
288 | 197, 244,
275 | grpsubeq0 18990 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((Poly1‘𝐾) ∈ Grp ∧ (𝐺‘𝑢) ∈
(Base‘(Poly1‘𝐾)) ∧ (𝐺‘𝑣) ∈
(Base‘(Poly1‘𝐾))) → (((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) =
(0g‘(Poly1‘𝐾)) ↔ (𝐺‘𝑢) = (𝐺‘𝑣))) |
289 | 288 | necon3bid 2974 |
. . . . . . . . . . . . . . . . . 18
⊢
(((Poly1‘𝐾) ∈ Grp ∧ (𝐺‘𝑢) ∈
(Base‘(Poly1‘𝐾)) ∧ (𝐺‘𝑣) ∈
(Base‘(Poly1‘𝐾))) → (((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) ≠
(0g‘(Poly1‘𝐾)) ↔ (𝐺‘𝑢) ≠ (𝐺‘𝑣))) |
290 | 252, 268,
274, 289 | syl3anc 1368 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) ≠
(0g‘(Poly1‘𝐾)) ↔ (𝐺‘𝑢) ≠ (𝐺‘𝑣))) |
291 | 287, 290 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) ≠
(0g‘(Poly1‘𝐾))) |
292 | 195, 197,
242, 194, 243, 244, 247, 277, 291 | fta1g 26149 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ≤ (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)))) |
293 | 242, 195,
197 | deg1xrcl 26062 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) ∈ (Base‘(Poly1‘𝐾)) → (( deg1
‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ ℝ*) |
294 | 277, 293 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ ℝ*) |
295 | 104 | ad4antr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐷 ∈ ℝ) |
296 | | 1red 11247 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 1 ∈ ℝ) |
297 | 295, 296 | resubcld 11674 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝐷 − 1) ∈ ℝ) |
298 | 297 | rexrd 11296 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝐷 − 1) ∈
ℝ*) |
299 | | simp-4l 781 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝜑) |
300 | | fvexd 6911 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ V) |
301 | | cnvexg 7932 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ V → ◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ V) |
302 | 300, 301 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ V) |
303 | 302 | imaexd 7924 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)}) ∈ V) |
304 | | hashxnn0 14334 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)}) ∈ V → (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ∈
ℕ0*) |
305 | | xnn0xr 12582 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ∈ ℕ0* →
(♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ∈ ℝ*) |
306 | 299, 303,
304, 305 | 4syl 19 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ∈ ℝ*) |
307 | 242, 195,
197 | deg1xrcl 26062 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺‘𝑣) ∈
(Base‘(Poly1‘𝐾)) → (( deg1 ‘𝐾)‘(𝐺‘𝑣)) ∈
ℝ*) |
308 | 274, 307 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (( deg1 ‘𝐾)‘(𝐺‘𝑣)) ∈
ℝ*) |
309 | 242, 195,
197 | deg1xrcl 26062 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺‘𝑢) ∈
(Base‘(Poly1‘𝐾)) → (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ∈
ℝ*) |
310 | 268, 309 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ∈
ℝ*) |
311 | 308, 310 | ifcld 4576 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → if((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢))) ∈
ℝ*) |
312 | 247 | idomringd 21274 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐾 ∈ Ring) |
313 | 195, 242,
312, 197, 275, 268, 274 | deg1suble 26087 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ≤ if((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢)))) |
314 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((
deg1 ‘𝐾)‘(𝐺‘𝑣)) = if((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢))) → (( deg1 ‘𝐾)‘(𝐺‘𝑣)) = if((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢)))) |
315 | 314 | breq1d 5159 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((
deg1 ‘𝐾)‘(𝐺‘𝑣)) = if((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢))) → ((( deg1 ‘𝐾)‘(𝐺‘𝑣)) ≤ (𝐷 − 1) ↔ if((( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢))) ≤ (𝐷 − 1))) |
316 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((
deg1 ‘𝐾)‘(𝐺‘𝑢)) = if((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢))) → (( deg1 ‘𝐾)‘(𝐺‘𝑢)) = if((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢)))) |
317 | 316 | breq1d 5159 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((
deg1 ‘𝐾)‘(𝐺‘𝑢)) = if((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢))) → ((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (𝐷 − 1) ↔ if((( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢))) ≤ (𝐷 − 1))) |
318 | | aks6d1c6.1 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∼ =
{〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈
(Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
319 | 198 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝐾 ∈ Field) |
320 | 3 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑃 ∈ ℙ) |
321 | 5 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑅 ∈ ℕ) |
322 | 2 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑁 ∈ ℕ) |
323 | 4 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑃 ∥ 𝑁) |
324 | 6 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (𝑁 gcd 𝑅) = 1) |
325 | 215 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝐴 < 𝑃) |
326 | 15 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝐴 ∈
ℕ0) |
327 | | aks6d1c6.14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
328 | 327 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
329 | | aks6d1c6.15 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
330 | 329 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
331 | 201 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
332 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑣 ∈ 𝑆) |
333 | 332, 271 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑣 ∈ (ℕ0
↑m (0...𝐴))) |
334 | 318, 214,
319, 320, 321, 322, 323, 324, 325, 218, 326, 7, 8, 328, 330, 331, 120, 1, 137, 333 | aks6d1c6lem1 41770 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (( deg1 ‘𝐾)‘(𝐺‘𝑣)) = Σ𝑡 ∈ (0...𝐴)(𝑣‘𝑡)) |
335 | | simpl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑠 = 𝑣 ∧ 𝑡 ∈ (0...𝐴)) → 𝑠 = 𝑣) |
336 | 335 | fveq1d 6898 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑠 = 𝑣 ∧ 𝑡 ∈ (0...𝐴)) → (𝑠‘𝑡) = (𝑣‘𝑡)) |
337 | 336 | sumeq2dv 15685 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 = 𝑣 → Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) = Σ𝑡 ∈ (0...𝐴)(𝑣‘𝑡)) |
338 | 337 | breq1d 5159 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 = 𝑣 → (Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1) ↔ Σ𝑡 ∈ (0...𝐴)(𝑣‘𝑡) ≤ (𝐷 − 1))) |
339 | 338 | elrab 3679 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ {𝑠 ∈ (ℕ0
↑m (0...𝐴))
∣ Σ𝑡 ∈
(0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} ↔ (𝑣 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑣‘𝑡) ≤ (𝐷 − 1))) |
340 | 269, 339 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ 𝑆 ↔ (𝑣 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑣‘𝑡) ≤ (𝐷 − 1))) |
341 | 332, 340 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (𝑣 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑣‘𝑡) ≤ (𝐷 − 1))) |
342 | 341 | simprd 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → Σ𝑡 ∈ (0...𝐴)(𝑣‘𝑡) ≤ (𝐷 − 1)) |
343 | 334, 342 | eqbrtrd 5171 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (( deg1 ‘𝐾)‘(𝐺‘𝑣)) ≤ (𝐷 − 1)) |
344 | 198 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝐾 ∈ Field) |
345 | 3 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑃 ∈ ℙ) |
346 | 5 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑅 ∈ ℕ) |
347 | 2 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑁 ∈ ℕ) |
348 | 4 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑃 ∥ 𝑁) |
349 | 6 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (𝑁 gcd 𝑅) = 1) |
350 | 215 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝐴 < 𝑃) |
351 | 15 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝐴 ∈
ℕ0) |
352 | 327 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
353 | 329 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
354 | 201 | ad5antr 732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
355 | 267 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑢 ∈ (ℕ0
↑m (0...𝐴))) |
356 | 318, 214,
344, 345, 346, 347, 348, 349, 350, 218, 351, 7, 8, 352, 353, 354, 120, 1, 137, 355 | aks6d1c6lem1 41770 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (( deg1 ‘𝐾)‘(𝐺‘𝑢)) = Σ𝑡 ∈ (0...𝐴)(𝑢‘𝑡)) |
357 | | simp-4r 782 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → 𝑢 ∈ 𝑆) |
358 | 257, 262 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 ∈ 𝑆 ↔ (𝑢 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑢‘𝑡) ≤ (𝐷 − 1))) |
359 | 357, 358 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (𝑢 ∈ (ℕ0
↑m (0...𝐴))
∧ Σ𝑡 ∈
(0...𝐴)(𝑢‘𝑡) ≤ (𝐷 − 1))) |
360 | 359 | simprd 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → Σ𝑡 ∈ (0...𝐴)(𝑢‘𝑡) ≤ (𝐷 − 1)) |
361 | 356, 360 | eqbrtrd 5171 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) ∧ ¬ (( deg1
‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣))) → (( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (𝐷 − 1)) |
362 | 315, 317,
343, 361 | ifbothda 4568 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → if((( deg1 ‘𝐾)‘(𝐺‘𝑢)) ≤ (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑣)), (( deg1 ‘𝐾)‘(𝐺‘𝑢))) ≤ (𝐷 − 1)) |
363 | 294, 311,
298, 313, 362 | xrletrd 13176 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ≤ (𝐷 − 1)) |
364 | 295 | rexrd 11296 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐷 ∈
ℝ*) |
365 | 295 | ltm1d 12179 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝐷 − 1) < 𝐷) |
366 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑢 ∈ 𝑆) |
367 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑣 ∈ 𝑆) |
368 | 299, 366,
367 | jca31 513 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆)) |
369 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) |
370 | 368, 369 | jca 510 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣))) |
371 | 198 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐾 ∈ Field) |
372 | 3 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑃 ∈ ℙ) |
373 | 5 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑅 ∈ ℕ) |
374 | 2 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑁 ∈ ℕ) |
375 | 4 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑃 ∥ 𝑁) |
376 | 6 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝑁 gcd 𝑅) = 1) |
377 | 215 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐴 < 𝑃) |
378 | 15 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐴 ∈
ℕ0) |
379 | 327 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ∀𝑎 ∈ (1...𝐴)𝑁 ∼
((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
380 | 329 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
381 | 201 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
382 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑢 ∈ 𝑆) |
383 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑣 ∈ 𝑆) |
384 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣)) |
385 | 279 | adantl 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝑢 ≠ 𝑣) |
386 | | aks6d1c6lem3.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐽 = (𝑗 ∈ (ℕ0 ×
ℕ0) ↦ ((𝐸‘𝑗)(.g‘(mulGrp‘𝐾))𝑀)) |
387 | | aks6d1c6lem3.2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 ×
ℕ0)))) |
388 | 387 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 ×
ℕ0)))) |
389 | 318, 214,
371, 372, 373, 374, 375, 376, 377, 218, 378, 7, 8, 379, 380, 381, 120, 1, 137, 382, 383, 384, 385, 386, 388 | aks6d1c6lem2 41771 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐷 ≤ (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)}))) |
390 | 370, 389 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → 𝐷 ≤ (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)}))) |
391 | 298, 364,
306, 365, 390 | xrltletrd 13175 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (𝐷 − 1) < (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)}))) |
392 | 294, 298,
306, 363, 391 | xrlelttrd 13174 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) < (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)}))) |
393 | 242, 195,
244, 197 | deg1nn0clb 26070 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ Ring ∧ ((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) ∈ (Base‘(Poly1‘𝐾))) → (((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) ≠
(0g‘(Poly1‘𝐾)) ↔ (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ ℕ0)) |
394 | 312, 277,
393 | syl2anc 582 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)) ≠
(0g‘(Poly1‘𝐾)) ↔ (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ ℕ0)) |
395 | 291, 394 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ ℕ0) |
396 | 395 | nn0red 12566 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ ℝ) |
397 | 396 | rexrd 11296 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ ℝ*) |
398 | | fvexd 6911 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ V) |
399 | 398, 301 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ V) |
400 | 399 | imaexd 7924 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)}) ∈ V) |
401 | 400, 304 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ∈
ℕ0*) |
402 | 401, 305 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ∈ ℝ*) |
403 | | xrltnle 11313 |
. . . . . . . . . . . . . . . . 17
⊢ ((((
deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) ∈ ℝ* ∧
(♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ∈ ℝ*) → (((
deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) < (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ↔ ¬ (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ≤ (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))))) |
404 | 397, 402,
403 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ((( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) < (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ↔ ¬ (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ≤ (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))))) |
405 | 392, 404 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ¬ (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣))) “ {(0g‘𝐾)})) ≤ (( deg1 ‘𝐾)‘((𝐺‘𝑢)(-g‘(Poly1‘𝐾))(𝐺‘𝑣)))) |
406 | 292, 405 | pm2.21dd 194 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) |
407 | 406 | ex 411 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) → ((((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) ∧ ¬ 𝑢 = 𝑣) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)))) |
408 | 241, 407 | sylbird 259 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) → (¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → ¬ ¬ 𝑢 = 𝑣) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)))) |
409 | | biidd 261 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → (𝑢 = 𝑣 ↔ 𝑢 = 𝑣)) |
410 | 409 | necon3abid 2966 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → (𝑢 ≠ 𝑣 ↔ ¬ 𝑢 = 𝑣)) |
411 | 410 | necon1bbid 2969 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → (¬ ¬ 𝑢 = 𝑣 ↔ 𝑢 = 𝑣)) |
412 | 411 | pm5.74i 270 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → ¬ ¬ 𝑢 = 𝑣) ↔ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣)) |
413 | 412 | notbii 319 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → ¬ ¬ 𝑢 = 𝑣) ↔ ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣)) |
414 | 413 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) → (¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → ¬ ¬ 𝑢 = 𝑣) ↔ ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣))) |
415 | 414 | imbi1d 340 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) → ((¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → ¬ ¬ 𝑢 = 𝑣) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) ↔ (¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))))) |
416 | 408, 415 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) → (¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)))) |
417 | 416 | imp 405 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ∧ 𝑢 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) |
418 | | fveqeq2 6905 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) ↔ ((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑦))) |
419 | | equequ1 2020 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → (𝑥 = 𝑦 ↔ 𝑢 = 𝑦)) |
420 | 418, 419 | imbi12d 343 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → ((((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑢 = 𝑦))) |
421 | 420 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) ↔ ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑢 = 𝑦))) |
422 | | fveq2 6896 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑣 → ((𝐻 ↾ 𝑆)‘𝑦) = ((𝐻 ↾ 𝑆)‘𝑣)) |
423 | 422 | eqeq2d 2736 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑣 → (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑦) ↔ ((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣))) |
424 | | equequ2 2021 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑣 → (𝑢 = 𝑦 ↔ 𝑢 = 𝑣)) |
425 | 423, 424 | imbi12d 343 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑣 → ((((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑢 = 𝑦) ↔ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣))) |
426 | 425 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑣 → (¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑢 = 𝑦) ↔ ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣))) |
427 | 421, 426 | cbvrex2vw 3229 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) ↔ ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣)) |
428 | 427 | biimpi 215 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) → ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣)) |
429 | 428 | adantl 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) → ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑢) = ((𝐻 ↾ 𝑆)‘𝑣) → 𝑢 = 𝑣)) |
430 | 417, 429 | r19.29vva 3203 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) |
431 | 430 | ex 411 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)))) |
432 | | rexnal2 3124 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) |
433 | 432 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦))) |
434 | 433 | imbi1d 340 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑥 ∈ 𝑆 ∃𝑦 ∈ 𝑆 ¬ (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) ↔ (¬ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))))) |
435 | 431, 434 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (¬ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)))) |
436 | 239, 435 | jaod 857 |
. . . . . 6
⊢ (𝜑 → ((¬ (𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∨ ¬ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)))) |
437 | | ianor 979 |
. . . . . . . . 9
⊢ (¬
((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ↔ (¬ (𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∨ ¬ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦))) |
438 | 437 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (¬ ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) ↔ (¬ (𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∨ ¬ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)))) |
439 | 438 | biimpd 228 |
. . . . . . 7
⊢ (𝜑 → (¬ ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) → (¬ (𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∨ ¬ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)))) |
440 | 439 | imim1d 82 |
. . . . . 6
⊢ (𝜑 → (((¬ (𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∨ ¬ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) → (¬ ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))))) |
441 | 436, 440 | mpd 15 |
. . . . 5
⊢ (𝜑 → (¬ ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)))) |
442 | | dff13 7265 |
. . . . . . . . 9
⊢ ((𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆) ↔ ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦))) |
443 | 442 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ((𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆) ↔ ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)))) |
444 | 443 | notbid 317 |
. . . . . . 7
⊢ (𝜑 → (¬ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆) ↔ ¬ ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)))) |
445 | 444 | biimpd 228 |
. . . . . 6
⊢ (𝜑 → (¬ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆) → ¬ ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)))) |
446 | 445 | imim1d 82 |
. . . . 5
⊢ (𝜑 → ((¬ ((𝐻 ↾ 𝑆):𝑆⟶(𝐻 “ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (((𝐻 ↾ 𝑆)‘𝑥) = ((𝐻 ↾ 𝑆)‘𝑦) → 𝑥 = 𝑦)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) → (¬ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))))) |
447 | 441, 446 | mpd 15 |
. . . 4
⊢ (𝜑 → (¬ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆)))) |
448 | 447 | imp 405 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝐻 ↾ 𝑆):𝑆–1-1→(𝐻 “ 𝑆)) → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) |
449 | 182, 448 | pm2.61dan 811 |
. 2
⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ 𝑆))) |
450 | | hashss 14404 |
. . 3
⊢ (((𝐻 “ (ℕ0
↑m (0...𝐴))) ∈ V ∧ (𝐻 “ 𝑆) ⊆ (𝐻 “ (ℕ0
↑m (0...𝐴)))) → (♯‘(𝐻 “ 𝑆)) ≤ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴))))) |
451 | 124, 142,
450 | syl2anc 582 |
. 2
⊢ (𝜑 → (♯‘(𝐻 “ 𝑆)) ≤ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴))))) |
452 | 119, 147,
151, 449, 451 | xrletrd 13176 |
1
⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0
↑m (0...𝐴))))) |