MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmvallem Structured version   Visualization version   GIF version

Theorem rrxmvallem 23695
Description: Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypothesis
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
Assertion
Ref Expression
rrxmvallem ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑋()

Proof of Theorem rrxmvallem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 767 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = 0)
2 0cn 10484 . . . . . . . . . 10 0 ∈ ℂ
31, 2syl6eqel 2891 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
4 simprr 769 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐺𝑥) = 0)
51, 4eqtr4d 2834 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = (𝐺𝑥))
63, 5subeq0bd 10919 . . . . . . . 8 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → ((𝐹𝑥) − (𝐺𝑥)) = 0)
76sq0id 13412 . . . . . . 7 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0)
87ex 413 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
9 ioran 978 . . . . . . . 8 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ (¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0))
10 nne 2988 . . . . . . . . 9 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0)
11 nne 2988 . . . . . . . . 9 (¬ (𝐺𝑥) ≠ 0 ↔ (𝐺𝑥) = 0)
1210, 11anbi12i 626 . . . . . . . 8 ((¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
139, 12bitri 276 . . . . . . 7 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
1413a1i 11 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)))
15 eqidd 2796 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)))
16 simpr 485 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1716fveq2d 6547 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐹𝑘) = (𝐹𝑥))
1816fveq2d 6547 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐺𝑘) = (𝐺𝑥))
1917, 18oveq12d 7039 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝑥) − (𝐺𝑥)))
2019oveq1d 7036 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
21 simpr 485 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → 𝑥𝐼)
22 ovex 7053 . . . . . . . . . . 11 (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V
2322a1i 11 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V)
2415, 20, 21, 23fvmptd 6646 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) = (((𝐹𝑥) − (𝐺𝑥))↑2))
2524neeq1d 3043 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0))
2625bicomd 224 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0 ↔ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2726necon1bbid 3023 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
288, 14, 273imtr4d 295 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) → ¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2928con4d 115 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 → ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)))
3029ss2rabdv 3977 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)})
31 unrab 4198 . . 3 ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}) = {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)}
3230, 31syl6sseqr 3943 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
33 simp1 1129 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
34 ovex 7053 . . . . 5 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V
35 eqid 2795 . . . . 5 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))
3634, 35fnmpti 6364 . . . 4 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼
37 suppvalfn 7693 . . . 4 (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3836, 2, 37mp3an13 1444 . . 3 (𝐼𝑉 → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3933, 38syl 17 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
40 elrabi 3614 . . . . . . 7 (𝐹 ∈ { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} → 𝐹 ∈ (ℝ ↑𝑚 𝐼))
41 rrxmval.1 . . . . . . 7 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
4240, 41eleq2s 2901 . . . . . 6 (𝐹𝑋𝐹 ∈ (ℝ ↑𝑚 𝐼))
43 elmapi 8283 . . . . . 6 (𝐹 ∈ (ℝ ↑𝑚 𝐼) → 𝐹:𝐼⟶ℝ)
44 ffn 6387 . . . . . 6 (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼)
4542, 43, 443syl 18 . . . . 5 (𝐹𝑋𝐹 Fn 𝐼)
46453ad2ant2 1127 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹 Fn 𝐼)
472a1i 11 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
48 suppvalfn 7693 . . . 4 ((𝐹 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
4946, 33, 47, 48syl3anc 1364 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
50 elrabi 3614 . . . . . . 7 (𝐺 ∈ { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} → 𝐺 ∈ (ℝ ↑𝑚 𝐼))
5150, 41eleq2s 2901 . . . . . 6 (𝐺𝑋𝐺 ∈ (ℝ ↑𝑚 𝐼))
52 elmapi 8283 . . . . . 6 (𝐺 ∈ (ℝ ↑𝑚 𝐼) → 𝐺:𝐼⟶ℝ)
53 ffn 6387 . . . . . 6 (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼)
5451, 52, 533syl 18 . . . . 5 (𝐺𝑋𝐺 Fn 𝐼)
55543ad2ant3 1128 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺 Fn 𝐼)
56 suppvalfn 7693 . . . 4 ((𝐺 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5755, 33, 47, 56syl3anc 1364 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5849, 57uneq12d 4065 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) = ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
5932, 39, 583sstr4d 3939 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wne 2984  {crab 3109  Vcvv 3437  cun 3861  wss 3863   class class class wbr 4966  cmpt 5045   Fn wfn 6225  wf 6226  cfv 6230  (class class class)co 7021   supp csupp 7686  𝑚 cmap 8261   finSupp cfsupp 8684  cc 10386  cr 10387  0cc0 10388  cmin 10722  2c2 11545  cexp 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-map 8263  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-2 11553  df-n0 11751  df-z 11835  df-uz 12099  df-seq 13225  df-exp 13285
This theorem is referenced by:  rrxmval  23696
  Copyright terms: Public domain W3C validator