Step | Hyp | Ref
| Expression |
1 | | simprl 771 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ ((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0)) → (𝐹‘𝑥) = 0) |
2 | | 0cn 10825 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
3 | 1, 2 | eqeltrdi 2846 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ ((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0)) → (𝐹‘𝑥) ∈ ℂ) |
4 | | simprr 773 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ ((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0)) → (𝐺‘𝑥) = 0) |
5 | 1, 4 | eqtr4d 2780 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ ((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
6 | 3, 5 | subeq0bd 11258 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ ((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0)) → ((𝐹‘𝑥) − (𝐺‘𝑥)) = 0) |
7 | 6 | sq0id 13763 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ ((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0)) → (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) = 0) |
8 | 7 | ex 416 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0) → (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) = 0)) |
9 | | ioran 984 |
. . . . . . . 8
⊢ (¬
((𝐹‘𝑥) ≠ 0 ∨ (𝐺‘𝑥) ≠ 0) ↔ (¬ (𝐹‘𝑥) ≠ 0 ∧ ¬ (𝐺‘𝑥) ≠ 0)) |
10 | | nne 2944 |
. . . . . . . . 9
⊢ (¬
(𝐹‘𝑥) ≠ 0 ↔ (𝐹‘𝑥) = 0) |
11 | | nne 2944 |
. . . . . . . . 9
⊢ (¬
(𝐺‘𝑥) ≠ 0 ↔ (𝐺‘𝑥) = 0) |
12 | 10, 11 | anbi12i 630 |
. . . . . . . 8
⊢ ((¬
(𝐹‘𝑥) ≠ 0 ∧ ¬ (𝐺‘𝑥) ≠ 0) ↔ ((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0)) |
13 | 9, 12 | bitri 278 |
. . . . . . 7
⊢ (¬
((𝐹‘𝑥) ≠ 0 ∨ (𝐺‘𝑥) ≠ 0) ↔ ((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0)) |
14 | 13 | a1i 11 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (¬ ((𝐹‘𝑥) ≠ 0 ∨ (𝐺‘𝑥) ≠ 0) ↔ ((𝐹‘𝑥) = 0 ∧ (𝐺‘𝑥) = 0))) |
15 | | eqidd 2738 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) = (𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
16 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥) |
17 | 16 | fveq2d 6721 |
. . . . . . . . . . . 12
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 = 𝑥) → (𝐹‘𝑘) = (𝐹‘𝑥)) |
18 | 16 | fveq2d 6721 |
. . . . . . . . . . . 12
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 = 𝑥) → (𝐺‘𝑘) = (𝐺‘𝑥)) |
19 | 17, 18 | oveq12d 7231 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 = 𝑥) → ((𝐹‘𝑘) − (𝐺‘𝑘)) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
20 | 19 | oveq1d 7228 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 = 𝑥) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
21 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
22 | | ovex 7246 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) ∈ V |
23 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) ∈ V) |
24 | 15, 20, 21, 23 | fvmptd 6825 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) = (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
25 | 24 | neeq1d 3000 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) ≠ 0)) |
26 | 25 | bicomd 226 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → ((((𝐹‘𝑥) − (𝐺‘𝑥))↑2) ≠ 0 ↔ ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0)) |
27 | 26 | necon1bbid 2980 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (¬ ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) = 0)) |
28 | 8, 14, 27 | 3imtr4d 297 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (¬ ((𝐹‘𝑥) ≠ 0 ∨ (𝐺‘𝑥) ≠ 0) → ¬ ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0)) |
29 | 28 | con4d 115 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0 → ((𝐹‘𝑥) ≠ 0 ∨ (𝐺‘𝑥) ≠ 0))) |
30 | 29 | ss2rabdv 3989 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → {𝑥 ∈ 𝐼 ∣ ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0} ⊆ {𝑥 ∈ 𝐼 ∣ ((𝐹‘𝑥) ≠ 0 ∨ (𝐺‘𝑥) ≠ 0)}) |
31 | | unrab 4220 |
. . 3
⊢ ({𝑥 ∈ 𝐼 ∣ (𝐹‘𝑥) ≠ 0} ∪ {𝑥 ∈ 𝐼 ∣ (𝐺‘𝑥) ≠ 0}) = {𝑥 ∈ 𝐼 ∣ ((𝐹‘𝑥) ≠ 0 ∨ (𝐺‘𝑥) ≠ 0)} |
32 | 30, 31 | sseqtrrdi 3952 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → {𝑥 ∈ 𝐼 ∣ ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0} ⊆ ({𝑥 ∈ 𝐼 ∣ (𝐹‘𝑥) ≠ 0} ∪ {𝑥 ∈ 𝐼 ∣ (𝐺‘𝑥) ≠ 0})) |
33 | | simp1 1138 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
34 | | ovex 7246 |
. . . . 5
⊢ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ V |
35 | | eqid 2737 |
. . . . 5
⊢ (𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) = (𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
36 | 34, 35 | fnmpti 6521 |
. . . 4
⊢ (𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) Fn 𝐼 |
37 | | suppvalfn 7911 |
. . . 4
⊢ (((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ ℂ) → ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) supp 0) = {𝑥 ∈ 𝐼 ∣ ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0}) |
38 | 36, 2, 37 | mp3an13 1454 |
. . 3
⊢ (𝐼 ∈ 𝑉 → ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) supp 0) = {𝑥 ∈ 𝐼 ∣ ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0}) |
39 | 33, 38 | syl 17 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) supp 0) = {𝑥 ∈ 𝐼 ∣ ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))‘𝑥) ≠ 0}) |
40 | | elrabi 3596 |
. . . . . . 7
⊢ (𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} → 𝐹 ∈ (ℝ ↑m 𝐼)) |
41 | | rrxmval.1 |
. . . . . . 7
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
42 | 40, 41 | eleq2s 2856 |
. . . . . 6
⊢ (𝐹 ∈ 𝑋 → 𝐹 ∈ (ℝ ↑m 𝐼)) |
43 | | elmapi 8530 |
. . . . . 6
⊢ (𝐹 ∈ (ℝ
↑m 𝐼)
→ 𝐹:𝐼⟶ℝ) |
44 | | ffn 6545 |
. . . . . 6
⊢ (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼) |
45 | 42, 43, 44 | 3syl 18 |
. . . . 5
⊢ (𝐹 ∈ 𝑋 → 𝐹 Fn 𝐼) |
46 | 45 | 3ad2ant2 1136 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹 Fn 𝐼) |
47 | 2 | a1i 11 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 0 ∈ ℂ) |
48 | | suppvalfn 7911 |
. . . 4
⊢ ((𝐹 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ ℂ) → (𝐹 supp 0) = {𝑥 ∈ 𝐼 ∣ (𝐹‘𝑥) ≠ 0}) |
49 | 46, 33, 47, 48 | syl3anc 1373 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹 supp 0) = {𝑥 ∈ 𝐼 ∣ (𝐹‘𝑥) ≠ 0}) |
50 | | elrabi 3596 |
. . . . . . 7
⊢ (𝐺 ∈ {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} → 𝐺 ∈ (ℝ ↑m 𝐼)) |
51 | 50, 41 | eleq2s 2856 |
. . . . . 6
⊢ (𝐺 ∈ 𝑋 → 𝐺 ∈ (ℝ ↑m 𝐼)) |
52 | | elmapi 8530 |
. . . . . 6
⊢ (𝐺 ∈ (ℝ
↑m 𝐼)
→ 𝐺:𝐼⟶ℝ) |
53 | | ffn 6545 |
. . . . . 6
⊢ (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼) |
54 | 51, 52, 53 | 3syl 18 |
. . . . 5
⊢ (𝐺 ∈ 𝑋 → 𝐺 Fn 𝐼) |
55 | 54 | 3ad2ant3 1137 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺 Fn 𝐼) |
56 | | suppvalfn 7911 |
. . . 4
⊢ ((𝐺 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ ℂ) → (𝐺 supp 0) = {𝑥 ∈ 𝐼 ∣ (𝐺‘𝑥) ≠ 0}) |
57 | 55, 33, 47, 56 | syl3anc 1373 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐺 supp 0) = {𝑥 ∈ 𝐼 ∣ (𝐺‘𝑥) ≠ 0}) |
58 | 49, 57 | uneq12d 4078 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) = ({𝑥 ∈ 𝐼 ∣ (𝐹‘𝑥) ≠ 0} ∪ {𝑥 ∈ 𝐼 ∣ (𝐺‘𝑥) ≠ 0})) |
59 | 32, 39, 58 | 3sstr4d 3948 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |