MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmvallem Structured version   Visualization version   GIF version

Theorem rrxmvallem 25331
Description: Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypothesis
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
Assertion
Ref Expression
rrxmvallem ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑋()

Proof of Theorem rrxmvallem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = 0)
2 0cn 11104 . . . . . . . . . 10 0 ∈ ℂ
31, 2eqeltrdi 2839 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
4 simprr 772 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐺𝑥) = 0)
51, 4eqtr4d 2769 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = (𝐺𝑥))
63, 5subeq0bd 11543 . . . . . . . 8 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → ((𝐹𝑥) − (𝐺𝑥)) = 0)
76sq0id 14101 . . . . . . 7 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0)
87ex 412 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
9 ioran 985 . . . . . . . 8 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ (¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0))
10 nne 2932 . . . . . . . . 9 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0)
11 nne 2932 . . . . . . . . 9 (¬ (𝐺𝑥) ≠ 0 ↔ (𝐺𝑥) = 0)
1210, 11anbi12i 628 . . . . . . . 8 ((¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
139, 12bitri 275 . . . . . . 7 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
1413a1i 11 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)))
15 eqidd 2732 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)))
16 simpr 484 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1716fveq2d 6826 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐹𝑘) = (𝐹𝑥))
1816fveq2d 6826 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐺𝑘) = (𝐺𝑥))
1917, 18oveq12d 7364 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝑥) − (𝐺𝑥)))
2019oveq1d 7361 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
21 simpr 484 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → 𝑥𝐼)
22 ovex 7379 . . . . . . . . . . 11 (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V
2322a1i 11 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V)
2415, 20, 21, 23fvmptd 6936 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) = (((𝐹𝑥) − (𝐺𝑥))↑2))
2524neeq1d 2987 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0))
2625bicomd 223 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0 ↔ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2726necon1bbid 2967 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
288, 14, 273imtr4d 294 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) → ¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2928con4d 115 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 → ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)))
3029ss2rabdv 4021 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)})
31 unrab 4262 . . 3 ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}) = {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)}
3230, 31sseqtrrdi 3971 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
33 simp1 1136 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
34 ovex 7379 . . . . 5 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V
35 eqid 2731 . . . . 5 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))
3634, 35fnmpti 6624 . . . 4 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼
37 suppvalfn 8098 . . . 4 (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3836, 2, 37mp3an13 1454 . . 3 (𝐼𝑉 → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3933, 38syl 17 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
40 elrabi 3638 . . . . . . 7 (𝐹 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} → 𝐹 ∈ (ℝ ↑m 𝐼))
41 rrxmval.1 . . . . . . 7 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
4240, 41eleq2s 2849 . . . . . 6 (𝐹𝑋𝐹 ∈ (ℝ ↑m 𝐼))
43 elmapi 8773 . . . . . 6 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
44 ffn 6651 . . . . . 6 (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼)
4542, 43, 443syl 18 . . . . 5 (𝐹𝑋𝐹 Fn 𝐼)
46453ad2ant2 1134 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹 Fn 𝐼)
472a1i 11 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
48 suppvalfn 8098 . . . 4 ((𝐹 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
4946, 33, 47, 48syl3anc 1373 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
50 elrabi 3638 . . . . . . 7 (𝐺 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} → 𝐺 ∈ (ℝ ↑m 𝐼))
5150, 41eleq2s 2849 . . . . . 6 (𝐺𝑋𝐺 ∈ (ℝ ↑m 𝐼))
52 elmapi 8773 . . . . . 6 (𝐺 ∈ (ℝ ↑m 𝐼) → 𝐺:𝐼⟶ℝ)
53 ffn 6651 . . . . . 6 (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼)
5451, 52, 533syl 18 . . . . 5 (𝐺𝑋𝐺 Fn 𝐼)
55543ad2ant3 1135 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺 Fn 𝐼)
56 suppvalfn 8098 . . . 4 ((𝐺 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5755, 33, 47, 56syl3anc 1373 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5849, 57uneq12d 4116 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) = ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
5932, 39, 583sstr4d 3985 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  cun 3895  wss 3897   class class class wbr 5089  cmpt 5170   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  m cmap 8750   finSupp cfsupp 9245  cc 11004  cr 11005  0cc0 11006  cmin 11344  2c2 12180  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-exp 13969
This theorem is referenced by:  rrxmval  25332
  Copyright terms: Public domain W3C validator