MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmvallem Structured version   Visualization version   GIF version

Theorem rrxmvallem 25457
Description: Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypothesis
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
Assertion
Ref Expression
rrxmvallem ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑋()

Proof of Theorem rrxmvallem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = 0)
2 0cn 11282 . . . . . . . . . 10 0 ∈ ℂ
31, 2eqeltrdi 2852 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
4 simprr 772 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐺𝑥) = 0)
51, 4eqtr4d 2783 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = (𝐺𝑥))
63, 5subeq0bd 11716 . . . . . . . 8 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → ((𝐹𝑥) − (𝐺𝑥)) = 0)
76sq0id 14243 . . . . . . 7 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0)
87ex 412 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
9 ioran 984 . . . . . . . 8 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ (¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0))
10 nne 2950 . . . . . . . . 9 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0)
11 nne 2950 . . . . . . . . 9 (¬ (𝐺𝑥) ≠ 0 ↔ (𝐺𝑥) = 0)
1210, 11anbi12i 627 . . . . . . . 8 ((¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
139, 12bitri 275 . . . . . . 7 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
1413a1i 11 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)))
15 eqidd 2741 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)))
16 simpr 484 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1716fveq2d 6924 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐹𝑘) = (𝐹𝑥))
1816fveq2d 6924 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐺𝑘) = (𝐺𝑥))
1917, 18oveq12d 7466 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝑥) − (𝐺𝑥)))
2019oveq1d 7463 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
21 simpr 484 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → 𝑥𝐼)
22 ovex 7481 . . . . . . . . . . 11 (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V
2322a1i 11 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V)
2415, 20, 21, 23fvmptd 7036 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) = (((𝐹𝑥) − (𝐺𝑥))↑2))
2524neeq1d 3006 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0))
2625bicomd 223 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0 ↔ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2726necon1bbid 2986 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
288, 14, 273imtr4d 294 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) → ¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2928con4d 115 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 → ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)))
3029ss2rabdv 4099 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)})
31 unrab 4334 . . 3 ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}) = {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)}
3230, 31sseqtrrdi 4060 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
33 simp1 1136 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
34 ovex 7481 . . . . 5 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V
35 eqid 2740 . . . . 5 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))
3634, 35fnmpti 6723 . . . 4 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼
37 suppvalfn 8209 . . . 4 (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3836, 2, 37mp3an13 1452 . . 3 (𝐼𝑉 → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3933, 38syl 17 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
40 elrabi 3703 . . . . . . 7 (𝐹 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} → 𝐹 ∈ (ℝ ↑m 𝐼))
41 rrxmval.1 . . . . . . 7 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
4240, 41eleq2s 2862 . . . . . 6 (𝐹𝑋𝐹 ∈ (ℝ ↑m 𝐼))
43 elmapi 8907 . . . . . 6 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
44 ffn 6747 . . . . . 6 (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼)
4542, 43, 443syl 18 . . . . 5 (𝐹𝑋𝐹 Fn 𝐼)
46453ad2ant2 1134 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹 Fn 𝐼)
472a1i 11 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
48 suppvalfn 8209 . . . 4 ((𝐹 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
4946, 33, 47, 48syl3anc 1371 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
50 elrabi 3703 . . . . . . 7 (𝐺 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} → 𝐺 ∈ (ℝ ↑m 𝐼))
5150, 41eleq2s 2862 . . . . . 6 (𝐺𝑋𝐺 ∈ (ℝ ↑m 𝐼))
52 elmapi 8907 . . . . . 6 (𝐺 ∈ (ℝ ↑m 𝐼) → 𝐺:𝐼⟶ℝ)
53 ffn 6747 . . . . . 6 (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼)
5451, 52, 533syl 18 . . . . 5 (𝐺𝑋𝐺 Fn 𝐼)
55543ad2ant3 1135 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺 Fn 𝐼)
56 suppvalfn 8209 . . . 4 ((𝐺 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5755, 33, 47, 56syl3anc 1371 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5849, 57uneq12d 4192 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) = ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
5932, 39, 583sstr4d 4056 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cun 3974  wss 3976   class class class wbr 5166  cmpt 5249   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884   finSupp cfsupp 9431  cc 11182  cr 11183  0cc0 11184  cmin 11520  2c2 12348  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  rrxmval  25458
  Copyright terms: Public domain W3C validator