MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmvallem Structured version   Visualization version   GIF version

Theorem rrxmvallem 25438
Description: Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypothesis
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
Assertion
Ref Expression
rrxmvallem ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑋()

Proof of Theorem rrxmvallem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = 0)
2 0cn 11253 . . . . . . . . . 10 0 ∈ ℂ
31, 2eqeltrdi 2849 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
4 simprr 773 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐺𝑥) = 0)
51, 4eqtr4d 2780 . . . . . . . . 9 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (𝐹𝑥) = (𝐺𝑥))
63, 5subeq0bd 11689 . . . . . . . 8 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → ((𝐹𝑥) − (𝐺𝑥)) = 0)
76sq0id 14233 . . . . . . 7 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0)
87ex 412 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0) → (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
9 ioran 986 . . . . . . . 8 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ (¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0))
10 nne 2944 . . . . . . . . 9 (¬ (𝐹𝑥) ≠ 0 ↔ (𝐹𝑥) = 0)
11 nne 2944 . . . . . . . . 9 (¬ (𝐺𝑥) ≠ 0 ↔ (𝐺𝑥) = 0)
1210, 11anbi12i 628 . . . . . . . 8 ((¬ (𝐹𝑥) ≠ 0 ∧ ¬ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
139, 12bitri 275 . . . . . . 7 (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0))
1413a1i 11 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) ↔ ((𝐹𝑥) = 0 ∧ (𝐺𝑥) = 0)))
15 eqidd 2738 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)))
16 simpr 484 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
1716fveq2d 6910 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐹𝑘) = (𝐹𝑥))
1816fveq2d 6910 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (𝐺𝑘) = (𝐺𝑥))
1917, 18oveq12d 7449 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝑥) − (𝐺𝑥)))
2019oveq1d 7446 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) ∧ 𝑘 = 𝑥) → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
21 simpr 484 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → 𝑥𝐼)
22 ovex 7464 . . . . . . . . . . 11 (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V
2322a1i 11 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ V)
2415, 20, 21, 23fvmptd 7023 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) = (((𝐹𝑥) − (𝐺𝑥))↑2))
2524neeq1d 3000 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0))
2625bicomd 223 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((((𝐹𝑥) − (𝐺𝑥))↑2) ≠ 0 ↔ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2726necon1bbid 2980 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 ↔ (((𝐹𝑥) − (𝐺𝑥))↑2) = 0))
288, 14, 273imtr4d 294 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (¬ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0) → ¬ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0))
2928con4d 115 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0 → ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)))
3029ss2rabdv 4076 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)})
31 unrab 4315 . . 3 ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}) = {𝑥𝐼 ∣ ((𝐹𝑥) ≠ 0 ∨ (𝐺𝑥) ≠ 0)}
3230, 31sseqtrrdi 4025 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0} ⊆ ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
33 simp1 1137 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
34 ovex 7464 . . . . 5 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V
35 eqid 2737 . . . . 5 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) = (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))
3634, 35fnmpti 6711 . . . 4 (𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼
37 suppvalfn 8193 . . . 4 (((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3836, 2, 37mp3an13 1454 . . 3 (𝐼𝑉 → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
3933, 38syl 17 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) = {𝑥𝐼 ∣ ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2))‘𝑥) ≠ 0})
40 elrabi 3687 . . . . . . 7 (𝐹 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} → 𝐹 ∈ (ℝ ↑m 𝐼))
41 rrxmval.1 . . . . . . 7 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
4240, 41eleq2s 2859 . . . . . 6 (𝐹𝑋𝐹 ∈ (ℝ ↑m 𝐼))
43 elmapi 8889 . . . . . 6 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
44 ffn 6736 . . . . . 6 (𝐹:𝐼⟶ℝ → 𝐹 Fn 𝐼)
4542, 43, 443syl 18 . . . . 5 (𝐹𝑋𝐹 Fn 𝐼)
46453ad2ant2 1135 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹 Fn 𝐼)
472a1i 11 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
48 suppvalfn 8193 . . . 4 ((𝐹 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
4946, 33, 47, 48syl3anc 1373 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) = {𝑥𝐼 ∣ (𝐹𝑥) ≠ 0})
50 elrabi 3687 . . . . . . 7 (𝐺 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} → 𝐺 ∈ (ℝ ↑m 𝐼))
5150, 41eleq2s 2859 . . . . . 6 (𝐺𝑋𝐺 ∈ (ℝ ↑m 𝐼))
52 elmapi 8889 . . . . . 6 (𝐺 ∈ (ℝ ↑m 𝐼) → 𝐺:𝐼⟶ℝ)
53 ffn 6736 . . . . . 6 (𝐺:𝐼⟶ℝ → 𝐺 Fn 𝐼)
5451, 52, 533syl 18 . . . . 5 (𝐺𝑋𝐺 Fn 𝐼)
55543ad2ant3 1136 . . . 4 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺 Fn 𝐼)
56 suppvalfn 8193 . . . 4 ((𝐺 Fn 𝐼𝐼𝑉 ∧ 0 ∈ ℂ) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5755, 33, 47, 56syl3anc 1373 . . 3 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) = {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0})
5849, 57uneq12d 4169 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) = ({𝑥𝐼 ∣ (𝐹𝑥) ≠ 0} ∪ {𝑥𝐼 ∣ (𝐺𝑥) ≠ 0}))
5932, 39, 583sstr4d 4039 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑘𝐼 ↦ (((𝐹𝑘) − (𝐺𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  cun 3949  wss 3951   class class class wbr 5143  cmpt 5225   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431   supp csupp 8185  m cmap 8866   finSupp cfsupp 9401  cc 11153  cr 11154  0cc0 11155  cmin 11492  2c2 12321  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  rrxmval  25439
  Copyright terms: Public domain W3C validator