Step | Hyp | Ref
| Expression |
1 | | remet.1 |
. . . . 5
⊢ 𝐷 = ((abs ∘ − )
↾ (ℝ × ℝ)) |
2 | 1 | rexmet 23860 |
. . . 4
⊢ 𝐷 ∈
(∞Met‘ℝ) |
3 | | blrn 23470 |
. . . 4
⊢ (𝐷 ∈
(∞Met‘ℝ) → (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟))) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢ (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ*
𝑧 = (𝑦(ball‘𝐷)𝑟)) |
5 | | elxr 12781 |
. . . . . 6
⊢ (𝑟 ∈ ℝ*
↔ (𝑟 ∈ ℝ
∨ 𝑟 = +∞ ∨
𝑟 =
-∞)) |
6 | 1 | bl2ioo 23861 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) = ((𝑦 − 𝑟)(,)(𝑦 + 𝑟))) |
7 | | resubcl 11215 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦 − 𝑟) ∈ ℝ) |
8 | | readdcl 10885 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦 + 𝑟) ∈ ℝ) |
9 | | ioof 13108 |
. . . . . . . . . . 11
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
10 | | ffn 6584 |
. . . . . . . . . . 11
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → (,) Fn (ℝ* ×
ℝ*)) |
11 | 9, 10 | ax-mp 5 |
. . . . . . . . . 10
⊢ (,) Fn
(ℝ* × ℝ*) |
12 | | rexr 10952 |
. . . . . . . . . 10
⊢ ((𝑦 − 𝑟) ∈ ℝ → (𝑦 − 𝑟) ∈
ℝ*) |
13 | | rexr 10952 |
. . . . . . . . . 10
⊢ ((𝑦 + 𝑟) ∈ ℝ → (𝑦 + 𝑟) ∈
ℝ*) |
14 | | fnovrn 7425 |
. . . . . . . . . 10
⊢ (((,) Fn
(ℝ* × ℝ*) ∧ (𝑦 − 𝑟) ∈ ℝ* ∧ (𝑦 + 𝑟) ∈ ℝ*) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
15 | 11, 12, 13, 14 | mp3an3an 1465 |
. . . . . . . . 9
⊢ (((𝑦 − 𝑟) ∈ ℝ ∧ (𝑦 + 𝑟) ∈ ℝ) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
16 | 7, 8, 15 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
17 | 6, 16 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
18 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑟 = +∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)+∞)) |
19 | 1 | remet 23859 |
. . . . . . . . . 10
⊢ 𝐷 ∈
(Met‘ℝ) |
20 | | blpnf 23458 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘ℝ)
∧ 𝑦 ∈ ℝ)
→ (𝑦(ball‘𝐷)+∞) =
ℝ) |
21 | 19, 20 | mpan 686 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)+∞) = ℝ) |
22 | 18, 21 | sylan9eqr 2801 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) = ℝ) |
23 | | ioomax 13083 |
. . . . . . . . 9
⊢
(-∞(,)+∞) = ℝ |
24 | | ioorebas 13112 |
. . . . . . . . 9
⊢
(-∞(,)+∞) ∈ ran (,) |
25 | 23, 24 | eqeltrri 2836 |
. . . . . . . 8
⊢ ℝ
∈ ran (,) |
26 | 22, 25 | eqeltrdi 2847 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
27 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑟 = -∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)-∞)) |
28 | | 0xr 10953 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
29 | | nltmnf 12794 |
. . . . . . . . . . 11
⊢ (0 ∈
ℝ* → ¬ 0 < -∞) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . . 10
⊢ ¬ 0
< -∞ |
31 | | mnfxr 10963 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
32 | | xbln0 23475 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈
(∞Met‘ℝ) ∧ 𝑦 ∈ ℝ ∧ -∞ ∈
ℝ*) → ((𝑦(ball‘𝐷)-∞) ≠ ∅ ↔ 0 <
-∞)) |
33 | 2, 31, 32 | mp3an13 1450 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → ((𝑦(ball‘𝐷)-∞) ≠ ∅ ↔ 0 <
-∞)) |
34 | 33 | necon1bbid 2982 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (¬ 0
< -∞ ↔ (𝑦(ball‘𝐷)-∞) = ∅)) |
35 | 30, 34 | mpbii 232 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)-∞) = ∅) |
36 | 27, 35 | sylan9eqr 2801 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) = ∅) |
37 | | iooid 13036 |
. . . . . . . . 9
⊢ (0(,)0) =
∅ |
38 | | ioorebas 13112 |
. . . . . . . . 9
⊢ (0(,)0)
∈ ran (,) |
39 | 37, 38 | eqeltrri 2836 |
. . . . . . . 8
⊢ ∅
∈ ran (,) |
40 | 36, 39 | eqeltrdi 2847 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
41 | 17, 26, 40 | 3jaodan 1428 |
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ (𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞)) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
42 | 5, 41 | sylan2b 593 |
. . . . 5
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*)
→ (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
43 | | eleq1 2826 |
. . . . 5
⊢ (𝑧 = (𝑦(ball‘𝐷)𝑟) → (𝑧 ∈ ran (,) ↔ (𝑦(ball‘𝐷)𝑟) ∈ ran (,))) |
44 | 42, 43 | syl5ibrcom 246 |
. . . 4
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*)
→ (𝑧 = (𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,))) |
45 | 44 | rexlimivv 3220 |
. . 3
⊢
(∃𝑦 ∈
ℝ ∃𝑟 ∈
ℝ* 𝑧 =
(𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,)) |
46 | 4, 45 | sylbi 216 |
. 2
⊢ (𝑧 ∈ ran (ball‘𝐷) → 𝑧 ∈ ran (,)) |
47 | 46 | ssriv 3921 |
1
⊢ ran
(ball‘𝐷) ⊆ ran
(,) |