MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssioo Structured version   Visualization version   GIF version

Theorem blssioo 23864
Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
blssioo ran (ball‘𝐷) ⊆ ran (,)

Proof of Theorem blssioo
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . 5 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 23860 . . . 4 𝐷 ∈ (∞Met‘ℝ)
3 blrn 23470 . . . 4 (𝐷 ∈ (∞Met‘ℝ) → (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟)))
42, 3ax-mp 5 . . 3 (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟))
5 elxr 12781 . . . . . 6 (𝑟 ∈ ℝ* ↔ (𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞))
61bl2ioo 23861 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) = ((𝑦𝑟)(,)(𝑦 + 𝑟)))
7 resubcl 11215 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦𝑟) ∈ ℝ)
8 readdcl 10885 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦 + 𝑟) ∈ ℝ)
9 ioof 13108 . . . . . . . . . . 11 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
10 ffn 6584 . . . . . . . . . . 11 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
119, 10ax-mp 5 . . . . . . . . . 10 (,) Fn (ℝ* × ℝ*)
12 rexr 10952 . . . . . . . . . 10 ((𝑦𝑟) ∈ ℝ → (𝑦𝑟) ∈ ℝ*)
13 rexr 10952 . . . . . . . . . 10 ((𝑦 + 𝑟) ∈ ℝ → (𝑦 + 𝑟) ∈ ℝ*)
14 fnovrn 7425 . . . . . . . . . 10 (((,) Fn (ℝ* × ℝ*) ∧ (𝑦𝑟) ∈ ℝ* ∧ (𝑦 + 𝑟) ∈ ℝ*) → ((𝑦𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,))
1511, 12, 13, 14mp3an3an 1465 . . . . . . . . 9 (((𝑦𝑟) ∈ ℝ ∧ (𝑦 + 𝑟) ∈ ℝ) → ((𝑦𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,))
167, 8, 15syl2anc 583 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑦𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,))
176, 16eqeltrd 2839 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
18 oveq2 7263 . . . . . . . . 9 (𝑟 = +∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)+∞))
191remet 23859 . . . . . . . . . 10 𝐷 ∈ (Met‘ℝ)
20 blpnf 23458 . . . . . . . . . 10 ((𝐷 ∈ (Met‘ℝ) ∧ 𝑦 ∈ ℝ) → (𝑦(ball‘𝐷)+∞) = ℝ)
2119, 20mpan 686 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)+∞) = ℝ)
2218, 21sylan9eqr 2801 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) = ℝ)
23 ioomax 13083 . . . . . . . . 9 (-∞(,)+∞) = ℝ
24 ioorebas 13112 . . . . . . . . 9 (-∞(,)+∞) ∈ ran (,)
2523, 24eqeltrri 2836 . . . . . . . 8 ℝ ∈ ran (,)
2622, 25eqeltrdi 2847 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
27 oveq2 7263 . . . . . . . . 9 (𝑟 = -∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)-∞))
28 0xr 10953 . . . . . . . . . . 11 0 ∈ ℝ*
29 nltmnf 12794 . . . . . . . . . . 11 (0 ∈ ℝ* → ¬ 0 < -∞)
3028, 29ax-mp 5 . . . . . . . . . 10 ¬ 0 < -∞
31 mnfxr 10963 . . . . . . . . . . . 12 -∞ ∈ ℝ*
32 xbln0 23475 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑦 ∈ ℝ ∧ -∞ ∈ ℝ*) → ((𝑦(ball‘𝐷)-∞) ≠ ∅ ↔ 0 < -∞))
332, 31, 32mp3an13 1450 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((𝑦(ball‘𝐷)-∞) ≠ ∅ ↔ 0 < -∞))
3433necon1bbid 2982 . . . . . . . . . 10 (𝑦 ∈ ℝ → (¬ 0 < -∞ ↔ (𝑦(ball‘𝐷)-∞) = ∅))
3530, 34mpbii 232 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)-∞) = ∅)
3627, 35sylan9eqr 2801 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) = ∅)
37 iooid 13036 . . . . . . . . 9 (0(,)0) = ∅
38 ioorebas 13112 . . . . . . . . 9 (0(,)0) ∈ ran (,)
3937, 38eqeltrri 2836 . . . . . . . 8 ∅ ∈ ran (,)
4036, 39eqeltrdi 2847 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
4117, 26, 403jaodan 1428 . . . . . 6 ((𝑦 ∈ ℝ ∧ (𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞)) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
425, 41sylan2b 593 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
43 eleq1 2826 . . . . 5 (𝑧 = (𝑦(ball‘𝐷)𝑟) → (𝑧 ∈ ran (,) ↔ (𝑦(ball‘𝐷)𝑟) ∈ ran (,)))
4442, 43syl5ibrcom 246 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,)))
4544rexlimivv 3220 . . 3 (∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,))
464, 45sylbi 216 . 2 (𝑧 ∈ ran (ball‘𝐷) → 𝑧 ∈ ran (,))
4746ssriv 3921 1 ran (ball‘𝐷) ⊆ ran (,)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  w3o 1084   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  c0 4253  𝒫 cpw 4530   class class class wbr 5070   × cxp 5578  ran crn 5581  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cmin 11135  (,)cioo 13008  abscabs 14873  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505
This theorem is referenced by:  tgioo  23865
  Copyright terms: Public domain W3C validator