MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrpt Structured version   Visualization version   GIF version

Theorem dchrpt 25283
Description: For any element other than 1, there is a Dirichlet character that is not one at the given element. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.a (𝜑𝐴𝐵)
Assertion
Ref Expression
dchrpt (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Distinct variable groups:   𝑥, 1   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝑁   𝑥,𝑍   𝑥,𝐷   𝜑,𝑥

Proof of Theorem dchrpt
Dummy variables 𝑎 𝑏 𝑘 𝑛 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.g . . . . 5 𝐺 = (DChr‘𝑁)
2 dchrpt.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrpt.d . . . . 5 𝐷 = (Base‘𝐺)
4 dchrpt.b . . . . 5 𝐵 = (Base‘𝑍)
5 dchrpt.1 . . . . 5 1 = (1r𝑍)
6 dchrpt.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
76ad3antrrr 721 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → 𝑁 ∈ ℕ)
8 dchrpt.n1 . . . . . 6 (𝜑𝐴1 )
98ad3antrrr 721 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → 𝐴1 )
10 eqid 2765 . . . . 5 (Unit‘𝑍) = (Unit‘𝑍)
11 eqid 2765 . . . . 5 ((mulGrp‘𝑍) ↾s (Unit‘𝑍)) = ((mulGrp‘𝑍) ↾s (Unit‘𝑍))
12 eqid 2765 . . . . 5 (.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) = (.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))
13 oveq1 6849 . . . . . . . . 9 (𝑛 = 𝑏 → (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)) = (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))
1413cbvmptv 4909 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))) = (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))
15 fveq2 6375 . . . . . . . . . 10 (𝑘 = 𝑎 → (𝑤𝑘) = (𝑤𝑎))
1615oveq2d 6858 . . . . . . . . 9 (𝑘 = 𝑎 → (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)) = (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎)))
1716mpteq2dv 4904 . . . . . . . 8 (𝑘 = 𝑎 → (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))) = (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎))))
1814, 17syl5eq 2811 . . . . . . 7 (𝑘 = 𝑎 → (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))) = (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎))))
1918rneqd 5521 . . . . . 6 (𝑘 = 𝑎 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))) = ran (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎))))
2019cbvmptv 4909 . . . . 5 (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) = (𝑎 ∈ dom 𝑤 ↦ ran (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎))))
21 simpllr 793 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → 𝐴 ∈ (Unit‘𝑍))
22 simplr 785 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → 𝑤 ∈ Word (Unit‘𝑍))
23 simprl 787 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → ((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))))
24 simprr 789 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))
251, 2, 3, 4, 5, 7, 9, 10, 11, 12, 20, 21, 22, 23, 24dchrptlem3 25282 . . . 4 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
26253adantr1 1210 . . 3 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ ((𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))):dom 𝑤⟶{𝑢 ∈ (SubGrp‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) ∣ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ↾s 𝑢) ∈ (CycGrp ∩ ran pGrp )} ∧ ((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
2710, 11unitgrpbas 18933 . . . 4 (Unit‘𝑍) = (Base‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))
28 eqid 2765 . . . 4 {𝑢 ∈ (SubGrp‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) ∣ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ↾s 𝑢) ∈ (CycGrp ∩ ran pGrp )} = {𝑢 ∈ (SubGrp‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) ∣ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ↾s 𝑢) ∈ (CycGrp ∩ ran pGrp )}
296nnnn0d 11598 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
302zncrng 20165 . . . . . 6 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
3110, 11unitabl 18935 . . . . . 6 (𝑍 ∈ CRing → ((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ∈ Abel)
3229, 30, 313syl 18 . . . . 5 (𝜑 → ((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ∈ Abel)
3332adantr 472 . . . 4 ((𝜑𝐴 ∈ (Unit‘𝑍)) → ((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ∈ Abel)
342, 4znfi 20180 . . . . . . 7 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
356, 34syl 17 . . . . . 6 (𝜑𝐵 ∈ Fin)
364, 10unitss 18927 . . . . . 6 (Unit‘𝑍) ⊆ 𝐵
37 ssfi 8387 . . . . . 6 ((𝐵 ∈ Fin ∧ (Unit‘𝑍) ⊆ 𝐵) → (Unit‘𝑍) ∈ Fin)
3835, 36, 37sylancl 580 . . . . 5 (𝜑 → (Unit‘𝑍) ∈ Fin)
3938adantr 472 . . . 4 ((𝜑𝐴 ∈ (Unit‘𝑍)) → (Unit‘𝑍) ∈ Fin)
40 eqid 2765 . . . 4 (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))
4127, 28, 33, 39, 12, 40ablfac2 18755 . . 3 ((𝜑𝐴 ∈ (Unit‘𝑍)) → ∃𝑤 ∈ Word (Unit‘𝑍)((𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))):dom 𝑤⟶{𝑢 ∈ (SubGrp‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) ∣ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ↾s 𝑢) ∈ (CycGrp ∩ ran pGrp )} ∧ ((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍)))
4226, 41r19.29a 3225 . 2 ((𝜑𝐴 ∈ (Unit‘𝑍)) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
431dchrabl 25270 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
44 ablgrp 18464 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
45 eqid 2765 . . . . . 6 (0g𝐺) = (0g𝐺)
463, 45grpidcl 17717 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
476, 43, 44, 464syl 19 . . . 4 (𝜑 → (0g𝐺) ∈ 𝐷)
4847adantr 472 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ (Unit‘𝑍)) → (0g𝐺) ∈ 𝐷)
49 0ne1 11343 . . . 4 0 ≠ 1
50 dchrpt.a . . . . . . . 8 (𝜑𝐴𝐵)
511, 2, 3, 4, 10, 47, 50dchrn0 25266 . . . . . . 7 (𝜑 → (((0g𝐺)‘𝐴) ≠ 0 ↔ 𝐴 ∈ (Unit‘𝑍)))
5251necon1bbid 2976 . . . . . 6 (𝜑 → (¬ 𝐴 ∈ (Unit‘𝑍) ↔ ((0g𝐺)‘𝐴) = 0))
5352biimpa 468 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ (Unit‘𝑍)) → ((0g𝐺)‘𝐴) = 0)
5453neeq1d 2996 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ (Unit‘𝑍)) → (((0g𝐺)‘𝐴) ≠ 1 ↔ 0 ≠ 1))
5549, 54mpbiri 249 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ (Unit‘𝑍)) → ((0g𝐺)‘𝐴) ≠ 1)
56 fveq1 6374 . . . . 5 (𝑥 = (0g𝐺) → (𝑥𝐴) = ((0g𝐺)‘𝐴))
5756neeq1d 2996 . . . 4 (𝑥 = (0g𝐺) → ((𝑥𝐴) ≠ 1 ↔ ((0g𝐺)‘𝐴) ≠ 1))
5857rspcev 3461 . . 3 (((0g𝐺) ∈ 𝐷 ∧ ((0g𝐺)‘𝐴) ≠ 1) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
5948, 55, 58syl2anc 579 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ (Unit‘𝑍)) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
6042, 59pm2.61dan 847 1 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056  {crab 3059  cin 3731  wss 3732   class class class wbr 4809  cmpt 4888  dom cdm 5277  ran crn 5278  wf 6064  cfv 6068  (class class class)co 6842  Fincfn 8160  0cc0 10189  1c1 10190  cn 11274  0cn0 11538  cz 11624  Word cword 13486  Basecbs 16130  s cress 16131  0gc0g 16366  Grpcgrp 17689  .gcmg 17807  SubGrpcsubg 17852   pGrp cpgp 18210  Abelcabl 18460  CycGrpccyg 18545   DProd cdprd 18659  mulGrpcmgp 18756  1rcur 18768  CRingccrg 18815  Unitcui 18906  ℤ/nczn 20124  DChrcdchr 25248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-rpss 7135  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-ec 7949  df-qs 7953  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-xnn0 11611  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-word 13487  df-concat 13542  df-s1 13567  df-shft 14092  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-limsup 14487  df-clim 14504  df-rlim 14505  df-sum 14702  df-ef 15080  df-sin 15082  df-cos 15083  df-pi 15085  df-dvds 15266  df-gcd 15498  df-prm 15666  df-pc 15821  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-qus 16435  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-mhm 17601  df-submnd 17602  df-grp 17692  df-minusg 17693  df-sbg 17694  df-mulg 17808  df-subg 17855  df-nsg 17856  df-eqg 17857  df-ghm 17922  df-gim 17965  df-ga 17986  df-cntz 18013  df-oppg 18039  df-od 18212  df-gex 18213  df-pgp 18214  df-lsm 18315  df-pj1 18316  df-cmn 18461  df-abl 18462  df-cyg 18546  df-dprd 18661  df-dpj 18662  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-rnghom 18984  df-subrg 19047  df-lmod 19134  df-lss 19202  df-lsp 19244  df-sra 19446  df-rgmod 19447  df-lidl 19448  df-rsp 19449  df-2idl 19506  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-zring 20092  df-zrh 20125  df-zn 20128  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594  df-cxp 24595  df-dchr 25249
This theorem is referenced by:  sumdchr2  25286
  Copyright terms: Public domain W3C validator