MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrpt Structured version   Visualization version   GIF version

Theorem dchrpt 25830
Description: For any element other than 1, there is a Dirichlet character that is not one at the given element. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.a (𝜑𝐴𝐵)
Assertion
Ref Expression
dchrpt (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Distinct variable groups:   𝑥, 1   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝑁   𝑥,𝑍   𝑥,𝐷   𝜑,𝑥

Proof of Theorem dchrpt
Dummy variables 𝑎 𝑏 𝑘 𝑛 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.g . . . . 5 𝐺 = (DChr‘𝑁)
2 dchrpt.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrpt.d . . . . 5 𝐷 = (Base‘𝐺)
4 dchrpt.b . . . . 5 𝐵 = (Base‘𝑍)
5 dchrpt.1 . . . . 5 1 = (1r𝑍)
6 dchrpt.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
76ad3antrrr 728 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → 𝑁 ∈ ℕ)
8 dchrpt.n1 . . . . . 6 (𝜑𝐴1 )
98ad3antrrr 728 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → 𝐴1 )
10 eqid 2820 . . . . 5 (Unit‘𝑍) = (Unit‘𝑍)
11 eqid 2820 . . . . 5 ((mulGrp‘𝑍) ↾s (Unit‘𝑍)) = ((mulGrp‘𝑍) ↾s (Unit‘𝑍))
12 eqid 2820 . . . . 5 (.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) = (.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))
13 oveq1 7140 . . . . . . . . 9 (𝑛 = 𝑏 → (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)) = (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))
1413cbvmptv 5145 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))) = (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))
15 fveq2 6646 . . . . . . . . . 10 (𝑘 = 𝑎 → (𝑤𝑘) = (𝑤𝑎))
1615oveq2d 7149 . . . . . . . . 9 (𝑘 = 𝑎 → (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)) = (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎)))
1716mpteq2dv 5138 . . . . . . . 8 (𝑘 = 𝑎 → (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))) = (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎))))
1814, 17syl5eq 2867 . . . . . . 7 (𝑘 = 𝑎 → (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))) = (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎))))
1918rneqd 5784 . . . . . 6 (𝑘 = 𝑎 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))) = ran (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎))))
2019cbvmptv 5145 . . . . 5 (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) = (𝑎 ∈ dom 𝑤 ↦ ran (𝑏 ∈ ℤ ↦ (𝑏(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑎))))
21 simpllr 774 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → 𝐴 ∈ (Unit‘𝑍))
22 simplr 767 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → 𝑤 ∈ Word (Unit‘𝑍))
23 simprl 769 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → ((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))))
24 simprr 771 . . . . 5 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))
251, 2, 3, 4, 5, 7, 9, 10, 11, 12, 20, 21, 22, 23, 24dchrptlem3 25829 . . . 4 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
26253adantr1 1165 . . 3 ((((𝜑𝐴 ∈ (Unit‘𝑍)) ∧ 𝑤 ∈ Word (Unit‘𝑍)) ∧ ((𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))):dom 𝑤⟶{𝑢 ∈ (SubGrp‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) ∣ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ↾s 𝑢) ∈ (CycGrp ∩ ran pGrp )} ∧ ((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍))) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
2710, 11unitgrpbas 19395 . . . 4 (Unit‘𝑍) = (Base‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))
28 eqid 2820 . . . 4 {𝑢 ∈ (SubGrp‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) ∣ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ↾s 𝑢) ∈ (CycGrp ∩ ran pGrp )} = {𝑢 ∈ (SubGrp‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) ∣ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ↾s 𝑢) ∈ (CycGrp ∩ ran pGrp )}
296nnnn0d 11934 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
302zncrng 20667 . . . . . 6 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
3110, 11unitabl 19397 . . . . . 6 (𝑍 ∈ CRing → ((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ∈ Abel)
3229, 30, 313syl 18 . . . . 5 (𝜑 → ((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ∈ Abel)
3332adantr 483 . . . 4 ((𝜑𝐴 ∈ (Unit‘𝑍)) → ((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ∈ Abel)
342, 4znfi 20682 . . . . . . 7 (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
356, 34syl 17 . . . . . 6 (𝜑𝐵 ∈ Fin)
364, 10unitss 19389 . . . . . 6 (Unit‘𝑍) ⊆ 𝐵
37 ssfi 8716 . . . . . 6 ((𝐵 ∈ Fin ∧ (Unit‘𝑍) ⊆ 𝐵) → (Unit‘𝑍) ∈ Fin)
3835, 36, 37sylancl 588 . . . . 5 (𝜑 → (Unit‘𝑍) ∈ Fin)
3938adantr 483 . . . 4 ((𝜑𝐴 ∈ (Unit‘𝑍)) → (Unit‘𝑍) ∈ Fin)
40 eqid 2820 . . . 4 (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))
4127, 28, 33, 39, 12, 40ablfac2 19190 . . 3 ((𝜑𝐴 ∈ (Unit‘𝑍)) → ∃𝑤 ∈ Word (Unit‘𝑍)((𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))):dom 𝑤⟶{𝑢 ∈ (SubGrp‘((mulGrp‘𝑍) ↾s (Unit‘𝑍))) ∣ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) ↾s 𝑢) ∈ (CycGrp ∩ ran pGrp )} ∧ ((mulGrp‘𝑍) ↾s (Unit‘𝑍))dom DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘)))) ∧ (((mulGrp‘𝑍) ↾s (Unit‘𝑍)) DProd (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘((mulGrp‘𝑍) ↾s (Unit‘𝑍)))(𝑤𝑘))))) = (Unit‘𝑍)))
4226, 41r19.29a 3276 . 2 ((𝜑𝐴 ∈ (Unit‘𝑍)) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
431dchrabl 25817 . . . 4 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
44 ablgrp 18890 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
45 eqid 2820 . . . . 5 (0g𝐺) = (0g𝐺)
463, 45grpidcl 18110 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
476, 43, 44, 464syl 19 . . 3 (𝜑 → (0g𝐺) ∈ 𝐷)
48 0ne1 11687 . . . 4 0 ≠ 1
49 dchrpt.a . . . . . . . 8 (𝜑𝐴𝐵)
501, 2, 3, 4, 10, 47, 49dchrn0 25813 . . . . . . 7 (𝜑 → (((0g𝐺)‘𝐴) ≠ 0 ↔ 𝐴 ∈ (Unit‘𝑍)))
5150necon1bbid 3045 . . . . . 6 (𝜑 → (¬ 𝐴 ∈ (Unit‘𝑍) ↔ ((0g𝐺)‘𝐴) = 0))
5251biimpa 479 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ (Unit‘𝑍)) → ((0g𝐺)‘𝐴) = 0)
5352neeq1d 3065 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ (Unit‘𝑍)) → (((0g𝐺)‘𝐴) ≠ 1 ↔ 0 ≠ 1))
5448, 53mpbiri 260 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ (Unit‘𝑍)) → ((0g𝐺)‘𝐴) ≠ 1)
55 fveq1 6645 . . . . 5 (𝑥 = (0g𝐺) → (𝑥𝐴) = ((0g𝐺)‘𝐴))
5655neeq1d 3065 . . . 4 (𝑥 = (0g𝐺) → ((𝑥𝐴) ≠ 1 ↔ ((0g𝐺)‘𝐴) ≠ 1))
5756rspcev 3602 . . 3 (((0g𝐺) ∈ 𝐷 ∧ ((0g𝐺)‘𝐴) ≠ 1) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
5847, 54, 57syl2an2r 683 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ (Unit‘𝑍)) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
5942, 58pm2.61dan 811 1 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3006  wrex 3126  {crab 3129  cin 3912  wss 3913   class class class wbr 5042  cmpt 5122  dom cdm 5531  ran crn 5532  wf 6327  cfv 6331  (class class class)co 7133  Fincfn 8487  0cc0 10515  1c1 10516  cn 11616  0cn0 11876  cz 11960  Word cword 13846  Basecbs 16462  s cress 16463  0gc0g 16692  Grpcgrp 18082  .gcmg 18203  SubGrpcsubg 18252   pGrp cpgp 18633  Abelcabl 18886  CycGrpccyg 18975   DProd cdprd 19094  mulGrpcmgp 19218  1rcur 19230  CRingccrg 19277  Unitcui 19368  ℤ/nczn 20626  DChrcdchr 25795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593  ax-addf 10594  ax-mulf 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-rpss 7427  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-tpos 7870  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-omul 8085  df-er 8267  df-ec 8269  df-qs 8273  df-map 8386  df-pm 8387  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fsupp 8812  df-fi 8853  df-sup 8884  df-inf 8885  df-oi 8952  df-dju 9308  df-card 9346  df-acn 9349  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-xnn0 11947  df-z 11961  df-dec 12078  df-uz 12223  df-q 12328  df-rp 12369  df-xneg 12486  df-xadd 12487  df-xmul 12488  df-ioo 12721  df-ioc 12722  df-ico 12723  df-icc 12724  df-fz 12877  df-fzo 13018  df-fl 13146  df-mod 13222  df-seq 13354  df-exp 13415  df-fac 13619  df-bc 13648  df-hash 13676  df-word 13847  df-concat 13903  df-s1 13930  df-shft 14406  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-limsup 14808  df-clim 14825  df-rlim 14826  df-sum 15023  df-ef 15401  df-sin 15403  df-cos 15404  df-pi 15406  df-dvds 15588  df-gcd 15822  df-prm 15994  df-pc 16152  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-hom 16568  df-cco 16569  df-rest 16675  df-topn 16676  df-0g 16694  df-gsum 16695  df-topgen 16696  df-pt 16697  df-prds 16700  df-xrs 16754  df-qtop 16759  df-imas 16760  df-qus 16761  df-xps 16762  df-mre 16836  df-mrc 16837  df-acs 16839  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-submnd 17936  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mulg 18204  df-subg 18255  df-nsg 18256  df-eqg 18257  df-ghm 18335  df-gim 18378  df-ga 18399  df-cntz 18426  df-oppg 18453  df-od 18635  df-gex 18636  df-pgp 18637  df-lsm 18740  df-pj1 18741  df-cmn 18887  df-abl 18888  df-cyg 18976  df-dprd 19096  df-dpj 19097  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-rnghom 19446  df-subrg 19509  df-lmod 19612  df-lss 19680  df-lsp 19720  df-sra 19920  df-rgmod 19921  df-lidl 19922  df-rsp 19923  df-2idl 19981  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-fbas 20518  df-fg 20519  df-cnfld 20522  df-zring 20594  df-zrh 20627  df-zn 20630  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-cld 21603  df-ntr 21604  df-cls 21605  df-nei 21682  df-lp 21720  df-perf 21721  df-cn 21811  df-cnp 21812  df-haus 21899  df-tx 22146  df-hmeo 22339  df-fil 22430  df-fm 22522  df-flim 22523  df-flf 22524  df-xms 22906  df-ms 22907  df-tms 22908  df-cncf 23462  df-limc 24448  df-dv 24449  df-log 25127  df-cxp 25128  df-dchr 25796
This theorem is referenced by:  sumdchr2  25833
  Copyright terms: Public domain W3C validator