Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mncn0 Structured version   Visualization version   GIF version

Theorem mncn0 40013
Description: A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
mncn0 (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝)

Proof of Theorem mncn0
StepHypRef Expression
1 mnccoe 40012 . 2 (𝑃 ∈ ( Monic ‘𝑆) → ((coeff‘𝑃)‘(deg‘𝑃)) = 1)
2 coe0 24851 . . . . . . 7 (coeff‘0𝑝) = (ℕ0 × {0})
32fveq1i 6653 . . . . . 6 ((coeff‘0𝑝)‘(deg‘0𝑝)) = ((ℕ0 × {0})‘(deg‘0𝑝))
4 dgr0 24857 . . . . . . . 8 (deg‘0𝑝) = 0
5 0nn0 11900 . . . . . . . 8 0 ∈ ℕ0
64, 5eqeltri 2910 . . . . . . 7 (deg‘0𝑝) ∈ ℕ0
7 c0ex 10624 . . . . . . . 8 0 ∈ V
87fvconst2 6948 . . . . . . 7 ((deg‘0𝑝) ∈ ℕ0 → ((ℕ0 × {0})‘(deg‘0𝑝)) = 0)
96, 8ax-mp 5 . . . . . 6 ((ℕ0 × {0})‘(deg‘0𝑝)) = 0
103, 9eqtri 2845 . . . . 5 ((coeff‘0𝑝)‘(deg‘0𝑝)) = 0
11 0ne1 11696 . . . . 5 0 ≠ 1
1210, 11eqnetri 3081 . . . 4 ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1
13 fveq2 6652 . . . . . 6 (𝑃 = 0𝑝 → (coeff‘𝑃) = (coeff‘0𝑝))
14 fveq2 6652 . . . . . 6 (𝑃 = 0𝑝 → (deg‘𝑃) = (deg‘0𝑝))
1513, 14fveq12d 6659 . . . . 5 (𝑃 = 0𝑝 → ((coeff‘𝑃)‘(deg‘𝑃)) = ((coeff‘0𝑝)‘(deg‘0𝑝)))
1615neeq1d 3070 . . . 4 (𝑃 = 0𝑝 → (((coeff‘𝑃)‘(deg‘𝑃)) ≠ 1 ↔ ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1))
1712, 16mpbiri 261 . . 3 (𝑃 = 0𝑝 → ((coeff‘𝑃)‘(deg‘𝑃)) ≠ 1)
1817necon2i 3045 . 2 (((coeff‘𝑃)‘(deg‘𝑃)) = 1 → 𝑃 ≠ 0𝑝)
191, 18syl 17 1 (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  wne 3011  {csn 4539   × cxp 5530  cfv 6334  0cc0 10526  1c1 10527  0cn0 11885  0𝑝c0p 24271  coeffccoe 24781  degcdgr 24782   Monic cmnc 40005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-rlim 14837  df-sum 15034  df-0p 24272  df-ply 24783  df-coe 24785  df-dgr 24786  df-mnc 40007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator