![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mncn0 | Structured version Visualization version GIF version |
Description: A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
Ref | Expression |
---|---|
mncn0 | β’ (π β ( Monic βπ) β π β 0π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnccoe 42562 | . 2 β’ (π β ( Monic βπ) β ((coeffβπ)β(degβπ)) = 1) | |
2 | coe0 26203 | . . . . . . 7 β’ (coeffβ0π) = (β0 Γ {0}) | |
3 | 2 | fveq1i 6898 | . . . . . 6 β’ ((coeffβ0π)β(degβ0π)) = ((β0 Γ {0})β(degβ0π)) |
4 | dgr0 26210 | . . . . . . . 8 β’ (degβ0π) = 0 | |
5 | 0nn0 12518 | . . . . . . . 8 β’ 0 β β0 | |
6 | 4, 5 | eqeltri 2825 | . . . . . . 7 β’ (degβ0π) β β0 |
7 | c0ex 11239 | . . . . . . . 8 β’ 0 β V | |
8 | 7 | fvconst2 7216 | . . . . . . 7 β’ ((degβ0π) β β0 β ((β0 Γ {0})β(degβ0π)) = 0) |
9 | 6, 8 | ax-mp 5 | . . . . . 6 β’ ((β0 Γ {0})β(degβ0π)) = 0 |
10 | 3, 9 | eqtri 2756 | . . . . 5 β’ ((coeffβ0π)β(degβ0π)) = 0 |
11 | 0ne1 12314 | . . . . 5 β’ 0 β 1 | |
12 | 10, 11 | eqnetri 3008 | . . . 4 β’ ((coeffβ0π)β(degβ0π)) β 1 |
13 | fveq2 6897 | . . . . . 6 β’ (π = 0π β (coeffβπ) = (coeffβ0π)) | |
14 | fveq2 6897 | . . . . . 6 β’ (π = 0π β (degβπ) = (degβ0π)) | |
15 | 13, 14 | fveq12d 6904 | . . . . 5 β’ (π = 0π β ((coeffβπ)β(degβπ)) = ((coeffβ0π)β(degβ0π))) |
16 | 15 | neeq1d 2997 | . . . 4 β’ (π = 0π β (((coeffβπ)β(degβπ)) β 1 β ((coeffβ0π)β(degβ0π)) β 1)) |
17 | 12, 16 | mpbiri 258 | . . 3 β’ (π = 0π β ((coeffβπ)β(degβπ)) β 1) |
18 | 17 | necon2i 2972 | . 2 β’ (((coeffβπ)β(degβπ)) = 1 β π β 0π) |
19 | 1, 18 | syl 17 | 1 β’ (π β ( Monic βπ) β π β 0π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 β wne 2937 {csn 4629 Γ cxp 5676 βcfv 6548 0cc0 11139 1c1 11140 β0cn0 12503 0πc0p 25611 coeffccoe 26133 degcdgr 26134 Monic cmnc 42555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-rlim 15466 df-sum 15666 df-0p 25612 df-ply 26135 df-coe 26137 df-dgr 26138 df-mnc 42557 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |