MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem11 Structured version   Visualization version   GIF version

Theorem 2sqlem11 26177
Description: Lemma for 2sq 26178. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
Assertion
Ref Expression
2sqlem11 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑌,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑃(𝑧,𝑤)   𝑆(𝑤)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem11
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (𝑃 mod 4) = 1)
2 simpl 486 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ ℙ)
3 1ne2 11936 . . . . . . . . . . 11 1 ≠ 2
43necomi 2989 . . . . . . . . . 10 2 ≠ 1
5 oveq1 7189 . . . . . . . . . . . 12 (𝑃 = 2 → (𝑃 mod 4) = (2 mod 4))
6 2re 11802 . . . . . . . . . . . . 13 2 ∈ ℝ
7 4re 11812 . . . . . . . . . . . . . 14 4 ∈ ℝ
8 4pos 11835 . . . . . . . . . . . . . 14 0 < 4
97, 8elrpii 12487 . . . . . . . . . . . . 13 4 ∈ ℝ+
10 0le2 11830 . . . . . . . . . . . . 13 0 ≤ 2
11 2lt4 11903 . . . . . . . . . . . . 13 2 < 4
12 modid 13367 . . . . . . . . . . . . 13 (((2 ∈ ℝ ∧ 4 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 4)) → (2 mod 4) = 2)
136, 9, 10, 11, 12mp4an 693 . . . . . . . . . . . 12 (2 mod 4) = 2
145, 13eqtrdi 2790 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 mod 4) = 2)
1514neeq1d 2994 . . . . . . . . . 10 (𝑃 = 2 → ((𝑃 mod 4) ≠ 1 ↔ 2 ≠ 1))
164, 15mpbiri 261 . . . . . . . . 9 (𝑃 = 2 → (𝑃 mod 4) ≠ 1)
1716necon2i 2969 . . . . . . . 8 ((𝑃 mod 4) = 1 → 𝑃 ≠ 2)
181, 17syl 17 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ≠ 2)
19 eldifsn 4685 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
202, 18, 19sylanbrc 586 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ (ℙ ∖ {2}))
21 m1lgs 26136 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
2220, 21syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
231, 22mpbird 260 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (-1 /L 𝑃) = 1)
24 neg1z 12111 . . . . 5 -1 ∈ ℤ
25 lgsqr 26099 . . . . 5 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1))))
2624, 20, 25sylancr 590 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1))))
2723, 26mpbid 235 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (¬ 𝑃 ∥ -1 ∧ ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1)))
2827simprd 499 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1))
29 simprl 771 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑛 ∈ ℤ)
30 1zzd 12106 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 1 ∈ ℤ)
31 gcd1 15983 . . . . . 6 (𝑛 ∈ ℤ → (𝑛 gcd 1) = 1)
3231ad2antrl 728 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → (𝑛 gcd 1) = 1)
33 eqidd 2740 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ((𝑛↑2) + 1) = ((𝑛↑2) + 1))
34 oveq1 7189 . . . . . . . 8 (𝑥 = 𝑛 → (𝑥 gcd 𝑦) = (𝑛 gcd 𝑦))
3534eqeq1d 2741 . . . . . . 7 (𝑥 = 𝑛 → ((𝑥 gcd 𝑦) = 1 ↔ (𝑛 gcd 𝑦) = 1))
36 oveq1 7189 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑥↑2) = (𝑛↑2))
3736oveq1d 7197 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥↑2) + (𝑦↑2)) = ((𝑛↑2) + (𝑦↑2)))
3837eqeq2d 2750 . . . . . . 7 (𝑥 = 𝑛 → (((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2))))
3935, 38anbi12d 634 . . . . . 6 (𝑥 = 𝑛 → (((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑛 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2)))))
40 oveq2 7190 . . . . . . . 8 (𝑦 = 1 → (𝑛 gcd 𝑦) = (𝑛 gcd 1))
4140eqeq1d 2741 . . . . . . 7 (𝑦 = 1 → ((𝑛 gcd 𝑦) = 1 ↔ (𝑛 gcd 1) = 1))
42 oveq1 7189 . . . . . . . . . 10 (𝑦 = 1 → (𝑦↑2) = (1↑2))
43 sq1 13662 . . . . . . . . . 10 (1↑2) = 1
4442, 43eqtrdi 2790 . . . . . . . . 9 (𝑦 = 1 → (𝑦↑2) = 1)
4544oveq2d 7198 . . . . . . . 8 (𝑦 = 1 → ((𝑛↑2) + (𝑦↑2)) = ((𝑛↑2) + 1))
4645eqeq2d 2750 . . . . . . 7 (𝑦 = 1 → (((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2)) ↔ ((𝑛↑2) + 1) = ((𝑛↑2) + 1)))
4741, 46anbi12d 634 . . . . . 6 (𝑦 = 1 → (((𝑛 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2))) ↔ ((𝑛 gcd 1) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + 1))))
4839, 47rspc2ev 3541 . . . . 5 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ ∧ ((𝑛 gcd 1) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + 1))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
4929, 30, 32, 33, 48syl112anc 1375 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
50 ovex 7215 . . . . 5 ((𝑛↑2) + 1) ∈ V
51 eqeq1 2743 . . . . . . 7 (𝑧 = ((𝑛↑2) + 1) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
5251anbi2d 632 . . . . . 6 (𝑧 = ((𝑛↑2) + 1) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2)))))
53522rexbidv 3211 . . . . 5 (𝑧 = ((𝑛↑2) + 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2)))))
54 2sqlem7.2 . . . . 5 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
5550, 53, 54elab2 3582 . . . 4 (((𝑛↑2) + 1) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
5649, 55sylibr 237 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ((𝑛↑2) + 1) ∈ 𝑌)
57 prmnn 16127 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5857ad2antrr 726 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃 ∈ ℕ)
59 simprr 773 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃 ∥ ((𝑛↑2) − -1))
6029zcnd 12181 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑛 ∈ ℂ)
6160sqcld 13612 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → (𝑛↑2) ∈ ℂ)
62 ax-1cn 10685 . . . . 5 1 ∈ ℂ
63 subneg 11025 . . . . 5 (((𝑛↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛↑2) − -1) = ((𝑛↑2) + 1))
6461, 62, 63sylancl 589 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ((𝑛↑2) − -1) = ((𝑛↑2) + 1))
6559, 64breqtrd 5066 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃 ∥ ((𝑛↑2) + 1))
66 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
6766, 542sqlem10 26176 . . 3 ((((𝑛↑2) + 1) ∈ 𝑌𝑃 ∈ ℕ ∧ 𝑃 ∥ ((𝑛↑2) + 1)) → 𝑃𝑆)
6856, 58, 65, 67syl3anc 1372 . 2 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃𝑆)
6928, 68rexlimddv 3202 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  {cab 2717  wne 2935  wrex 3055  cdif 3850  {csn 4526   class class class wbr 5040  cmpt 5120  ran crn 5536  cfv 6349  (class class class)co 7182  cc 10625  cr 10626  0cc0 10627  1c1 10628   + caddc 10630   < clt 10765  cle 10766  cmin 10960  -cneg 10961  cn 11728  2c2 11783  4c4 11785  cz 12074  +crp 12484   mod cmo 13340  cexp 13533  abscabs 14695  cdvds 15711   gcd cgcd 15949  cprime 16124  ℤ[i]cgz 16377   /L clgs 26042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705  ax-addf 10706  ax-mulf 10707
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-of 7437  df-ofr 7438  df-om 7612  df-1st 7726  df-2nd 7727  df-supp 7869  df-tpos 7933  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-oadd 8147  df-er 8332  df-ec 8334  df-qs 8338  df-map 8451  df-pm 8452  df-ixp 8520  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-fsupp 8919  df-sup 8991  df-inf 8992  df-oi 9059  df-dju 9415  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-xnn0 12061  df-z 12075  df-dec 12192  df-uz 12337  df-q 12443  df-rp 12485  df-fz 12994  df-fzo 13137  df-fl 13265  df-mod 13341  df-seq 13473  df-exp 13534  df-hash 13795  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-dvds 15712  df-gcd 15950  df-prm 16125  df-phi 16215  df-pc 16286  df-gz 16378  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-starv 16695  df-sca 16696  df-vsca 16697  df-ip 16698  df-tset 16699  df-ple 16700  df-ds 16702  df-unif 16703  df-hom 16704  df-cco 16705  df-0g 16830  df-gsum 16831  df-prds 16836  df-pws 16838  df-imas 16896  df-qus 16897  df-mre 16972  df-mrc 16973  df-acs 16975  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-mhm 18084  df-submnd 18085  df-grp 18234  df-minusg 18235  df-sbg 18236  df-mulg 18355  df-subg 18406  df-nsg 18407  df-eqg 18408  df-ghm 18486  df-cntz 18577  df-cmn 19038  df-abl 19039  df-mgp 19371  df-ur 19383  df-srg 19387  df-ring 19430  df-cring 19431  df-oppr 19507  df-dvdsr 19525  df-unit 19526  df-invr 19556  df-dvr 19567  df-rnghom 19601  df-drng 19635  df-field 19636  df-subrg 19664  df-lmod 19767  df-lss 19835  df-lsp 19875  df-sra 20075  df-rgmod 20076  df-lidl 20077  df-rsp 20078  df-2idl 20136  df-nzr 20162  df-rlreg 20187  df-domn 20188  df-idom 20189  df-cnfld 20230  df-zring 20302  df-zrh 20336  df-zn 20339  df-assa 20681  df-asp 20682  df-ascl 20683  df-psr 20734  df-mvr 20735  df-mpl 20736  df-opsr 20738  df-evls 20898  df-evl 20899  df-psr1 20967  df-vr1 20968  df-ply1 20969  df-coe1 20970  df-evl1 21098  df-mdeg 24817  df-deg1 24818  df-mon1 24895  df-uc1p 24896  df-q1p 24897  df-r1p 24898  df-lgs 26043
This theorem is referenced by:  2sq  26178
  Copyright terms: Public domain W3C validator