MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem11 Structured version   Visualization version   GIF version

Theorem 2sqlem11 26777
Description: Lemma for 2sq 26778. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
Assertion
Ref Expression
2sqlem11 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑌,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑃(𝑧,𝑤)   𝑆(𝑤)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem11
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (𝑃 mod 4) = 1)
2 simpl 483 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ ℙ)
3 1ne2 12361 . . . . . . . . . . 11 1 ≠ 2
43necomi 2998 . . . . . . . . . 10 2 ≠ 1
5 oveq1 7364 . . . . . . . . . . . 12 (𝑃 = 2 → (𝑃 mod 4) = (2 mod 4))
6 2re 12227 . . . . . . . . . . . . 13 2 ∈ ℝ
7 4re 12237 . . . . . . . . . . . . . 14 4 ∈ ℝ
8 4pos 12260 . . . . . . . . . . . . . 14 0 < 4
97, 8elrpii 12918 . . . . . . . . . . . . 13 4 ∈ ℝ+
10 0le2 12255 . . . . . . . . . . . . 13 0 ≤ 2
11 2lt4 12328 . . . . . . . . . . . . 13 2 < 4
12 modid 13801 . . . . . . . . . . . . 13 (((2 ∈ ℝ ∧ 4 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 4)) → (2 mod 4) = 2)
136, 9, 10, 11, 12mp4an 691 . . . . . . . . . . . 12 (2 mod 4) = 2
145, 13eqtrdi 2792 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 mod 4) = 2)
1514neeq1d 3003 . . . . . . . . . 10 (𝑃 = 2 → ((𝑃 mod 4) ≠ 1 ↔ 2 ≠ 1))
164, 15mpbiri 257 . . . . . . . . 9 (𝑃 = 2 → (𝑃 mod 4) ≠ 1)
1716necon2i 2978 . . . . . . . 8 ((𝑃 mod 4) = 1 → 𝑃 ≠ 2)
181, 17syl 17 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ≠ 2)
19 eldifsn 4747 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
202, 18, 19sylanbrc 583 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ (ℙ ∖ {2}))
21 m1lgs 26736 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
2220, 21syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
231, 22mpbird 256 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (-1 /L 𝑃) = 1)
24 neg1z 12539 . . . . 5 -1 ∈ ℤ
25 lgsqr 26699 . . . . 5 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1))))
2624, 20, 25sylancr 587 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1))))
2723, 26mpbid 231 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (¬ 𝑃 ∥ -1 ∧ ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1)))
2827simprd 496 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1))
29 simprl 769 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑛 ∈ ℤ)
30 1zzd 12534 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 1 ∈ ℤ)
31 gcd1 16408 . . . . . 6 (𝑛 ∈ ℤ → (𝑛 gcd 1) = 1)
3231ad2antrl 726 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → (𝑛 gcd 1) = 1)
33 eqidd 2737 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ((𝑛↑2) + 1) = ((𝑛↑2) + 1))
34 oveq1 7364 . . . . . . . 8 (𝑥 = 𝑛 → (𝑥 gcd 𝑦) = (𝑛 gcd 𝑦))
3534eqeq1d 2738 . . . . . . 7 (𝑥 = 𝑛 → ((𝑥 gcd 𝑦) = 1 ↔ (𝑛 gcd 𝑦) = 1))
36 oveq1 7364 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑥↑2) = (𝑛↑2))
3736oveq1d 7372 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥↑2) + (𝑦↑2)) = ((𝑛↑2) + (𝑦↑2)))
3837eqeq2d 2747 . . . . . . 7 (𝑥 = 𝑛 → (((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2))))
3935, 38anbi12d 631 . . . . . 6 (𝑥 = 𝑛 → (((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑛 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2)))))
40 oveq2 7365 . . . . . . . 8 (𝑦 = 1 → (𝑛 gcd 𝑦) = (𝑛 gcd 1))
4140eqeq1d 2738 . . . . . . 7 (𝑦 = 1 → ((𝑛 gcd 𝑦) = 1 ↔ (𝑛 gcd 1) = 1))
42 oveq1 7364 . . . . . . . . . 10 (𝑦 = 1 → (𝑦↑2) = (1↑2))
43 sq1 14099 . . . . . . . . . 10 (1↑2) = 1
4442, 43eqtrdi 2792 . . . . . . . . 9 (𝑦 = 1 → (𝑦↑2) = 1)
4544oveq2d 7373 . . . . . . . 8 (𝑦 = 1 → ((𝑛↑2) + (𝑦↑2)) = ((𝑛↑2) + 1))
4645eqeq2d 2747 . . . . . . 7 (𝑦 = 1 → (((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2)) ↔ ((𝑛↑2) + 1) = ((𝑛↑2) + 1)))
4741, 46anbi12d 631 . . . . . 6 (𝑦 = 1 → (((𝑛 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2))) ↔ ((𝑛 gcd 1) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + 1))))
4839, 47rspc2ev 3592 . . . . 5 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ ∧ ((𝑛 gcd 1) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + 1))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
4929, 30, 32, 33, 48syl112anc 1374 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
50 ovex 7390 . . . . 5 ((𝑛↑2) + 1) ∈ V
51 eqeq1 2740 . . . . . . 7 (𝑧 = ((𝑛↑2) + 1) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
5251anbi2d 629 . . . . . 6 (𝑧 = ((𝑛↑2) + 1) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2)))))
53522rexbidv 3213 . . . . 5 (𝑧 = ((𝑛↑2) + 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2)))))
54 2sqlem7.2 . . . . 5 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
5550, 53, 54elab2 3634 . . . 4 (((𝑛↑2) + 1) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
5649, 55sylibr 233 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ((𝑛↑2) + 1) ∈ 𝑌)
57 prmnn 16550 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5857ad2antrr 724 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃 ∈ ℕ)
59 simprr 771 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃 ∥ ((𝑛↑2) − -1))
6029zcnd 12608 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑛 ∈ ℂ)
6160sqcld 14049 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → (𝑛↑2) ∈ ℂ)
62 ax-1cn 11109 . . . . 5 1 ∈ ℂ
63 subneg 11450 . . . . 5 (((𝑛↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛↑2) − -1) = ((𝑛↑2) + 1))
6461, 62, 63sylancl 586 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ((𝑛↑2) − -1) = ((𝑛↑2) + 1))
6559, 64breqtrd 5131 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃 ∥ ((𝑛↑2) + 1))
66 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
6766, 542sqlem10 26776 . . 3 ((((𝑛↑2) + 1) ∈ 𝑌𝑃 ∈ ℕ ∧ 𝑃 ∥ ((𝑛↑2) + 1)) → 𝑃𝑆)
6856, 58, 65, 67syl3anc 1371 . 2 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃𝑆)
6928, 68rexlimddv 3158 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wrex 3073  cdif 3907  {csn 4586   class class class wbr 5105  cmpt 5188  ran crn 5634  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  -cneg 11386  cn 12153  2c2 12208  4c4 12210  cz 12499  +crp 12915   mod cmo 13774  cexp 13967  abscabs 15119  cdvds 16136   gcd cgcd 16374  cprime 16547  ℤ[i]cgz 16801   /L clgs 26642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-phi 16638  df-pc 16709  df-gz 16802  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-imas 17390  df-qus 17391  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-nzr 20728  df-rlreg 20753  df-domn 20754  df-idom 20755  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-assa 21259  df-asp 21260  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-evls 21482  df-evl 21483  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554  df-evl1 21682  df-mdeg 25417  df-deg1 25418  df-mon1 25495  df-uc1p 25496  df-q1p 25497  df-r1p 25498  df-lgs 26643
This theorem is referenced by:  2sq  26778
  Copyright terms: Public domain W3C validator