MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem11 Structured version   Visualization version   GIF version

Theorem 2sqlem11 27491
Description: Lemma for 2sq 27492. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
Assertion
Ref Expression
2sqlem11 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑌,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑃(𝑧,𝑤)   𝑆(𝑤)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem11
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (𝑃 mod 4) = 1)
2 simpl 482 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ ℙ)
3 1ne2 12501 . . . . . . . . . . 11 1 ≠ 2
43necomi 3001 . . . . . . . . . 10 2 ≠ 1
5 oveq1 7455 . . . . . . . . . . . 12 (𝑃 = 2 → (𝑃 mod 4) = (2 mod 4))
6 2re 12367 . . . . . . . . . . . . 13 2 ∈ ℝ
7 4re 12377 . . . . . . . . . . . . . 14 4 ∈ ℝ
8 4pos 12400 . . . . . . . . . . . . . 14 0 < 4
97, 8elrpii 13060 . . . . . . . . . . . . 13 4 ∈ ℝ+
10 0le2 12395 . . . . . . . . . . . . 13 0 ≤ 2
11 2lt4 12468 . . . . . . . . . . . . 13 2 < 4
12 modid 13947 . . . . . . . . . . . . 13 (((2 ∈ ℝ ∧ 4 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 4)) → (2 mod 4) = 2)
136, 9, 10, 11, 12mp4an 692 . . . . . . . . . . . 12 (2 mod 4) = 2
145, 13eqtrdi 2796 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 mod 4) = 2)
1514neeq1d 3006 . . . . . . . . . 10 (𝑃 = 2 → ((𝑃 mod 4) ≠ 1 ↔ 2 ≠ 1))
164, 15mpbiri 258 . . . . . . . . 9 (𝑃 = 2 → (𝑃 mod 4) ≠ 1)
1716necon2i 2981 . . . . . . . 8 ((𝑃 mod 4) = 1 → 𝑃 ≠ 2)
181, 17syl 17 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ≠ 2)
19 eldifsn 4811 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
202, 18, 19sylanbrc 582 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ (ℙ ∖ {2}))
21 m1lgs 27450 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
2220, 21syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
231, 22mpbird 257 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (-1 /L 𝑃) = 1)
24 neg1z 12679 . . . . 5 -1 ∈ ℤ
25 lgsqr 27413 . . . . 5 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1))))
2624, 20, 25sylancr 586 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1))))
2723, 26mpbid 232 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (¬ 𝑃 ∥ -1 ∧ ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1)))
2827simprd 495 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑛 ∈ ℤ 𝑃 ∥ ((𝑛↑2) − -1))
29 simprl 770 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑛 ∈ ℤ)
30 1zzd 12674 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 1 ∈ ℤ)
31 gcd1 16574 . . . . . 6 (𝑛 ∈ ℤ → (𝑛 gcd 1) = 1)
3231ad2antrl 727 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → (𝑛 gcd 1) = 1)
33 eqidd 2741 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ((𝑛↑2) + 1) = ((𝑛↑2) + 1))
34 oveq1 7455 . . . . . . . 8 (𝑥 = 𝑛 → (𝑥 gcd 𝑦) = (𝑛 gcd 𝑦))
3534eqeq1d 2742 . . . . . . 7 (𝑥 = 𝑛 → ((𝑥 gcd 𝑦) = 1 ↔ (𝑛 gcd 𝑦) = 1))
36 oveq1 7455 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑥↑2) = (𝑛↑2))
3736oveq1d 7463 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥↑2) + (𝑦↑2)) = ((𝑛↑2) + (𝑦↑2)))
3837eqeq2d 2751 . . . . . . 7 (𝑥 = 𝑛 → (((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2))))
3935, 38anbi12d 631 . . . . . 6 (𝑥 = 𝑛 → (((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑛 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2)))))
40 oveq2 7456 . . . . . . . 8 (𝑦 = 1 → (𝑛 gcd 𝑦) = (𝑛 gcd 1))
4140eqeq1d 2742 . . . . . . 7 (𝑦 = 1 → ((𝑛 gcd 𝑦) = 1 ↔ (𝑛 gcd 1) = 1))
42 oveq1 7455 . . . . . . . . . 10 (𝑦 = 1 → (𝑦↑2) = (1↑2))
43 sq1 14244 . . . . . . . . . 10 (1↑2) = 1
4442, 43eqtrdi 2796 . . . . . . . . 9 (𝑦 = 1 → (𝑦↑2) = 1)
4544oveq2d 7464 . . . . . . . 8 (𝑦 = 1 → ((𝑛↑2) + (𝑦↑2)) = ((𝑛↑2) + 1))
4645eqeq2d 2751 . . . . . . 7 (𝑦 = 1 → (((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2)) ↔ ((𝑛↑2) + 1) = ((𝑛↑2) + 1)))
4741, 46anbi12d 631 . . . . . 6 (𝑦 = 1 → (((𝑛 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + (𝑦↑2))) ↔ ((𝑛 gcd 1) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + 1))))
4839, 47rspc2ev 3648 . . . . 5 ((𝑛 ∈ ℤ ∧ 1 ∈ ℤ ∧ ((𝑛 gcd 1) = 1 ∧ ((𝑛↑2) + 1) = ((𝑛↑2) + 1))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
4929, 30, 32, 33, 48syl112anc 1374 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
50 ovex 7481 . . . . 5 ((𝑛↑2) + 1) ∈ V
51 eqeq1 2744 . . . . . . 7 (𝑧 = ((𝑛↑2) + 1) → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
5251anbi2d 629 . . . . . 6 (𝑧 = ((𝑛↑2) + 1) → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2)))))
53522rexbidv 3228 . . . . 5 (𝑧 = ((𝑛↑2) + 1) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2)))))
54 2sqlem7.2 . . . . 5 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
5550, 53, 54elab2 3698 . . . 4 (((𝑛↑2) + 1) ∈ 𝑌 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ ((𝑛↑2) + 1) = ((𝑥↑2) + (𝑦↑2))))
5649, 55sylibr 234 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ((𝑛↑2) + 1) ∈ 𝑌)
57 prmnn 16721 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
5857ad2antrr 725 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃 ∈ ℕ)
59 simprr 772 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃 ∥ ((𝑛↑2) − -1))
6029zcnd 12748 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑛 ∈ ℂ)
6160sqcld 14194 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → (𝑛↑2) ∈ ℂ)
62 ax-1cn 11242 . . . . 5 1 ∈ ℂ
63 subneg 11585 . . . . 5 (((𝑛↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛↑2) − -1) = ((𝑛↑2) + 1))
6461, 62, 63sylancl 585 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → ((𝑛↑2) − -1) = ((𝑛↑2) + 1))
6559, 64breqtrd 5192 . . 3 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃 ∥ ((𝑛↑2) + 1))
66 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
6766, 542sqlem10 27490 . . 3 ((((𝑛↑2) + 1) ∈ 𝑌𝑃 ∈ ℕ ∧ 𝑃 ∥ ((𝑛↑2) + 1)) → 𝑃𝑆)
6856, 58, 65, 67syl3anc 1371 . 2 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑛 ∈ ℤ ∧ 𝑃 ∥ ((𝑛↑2) − -1))) → 𝑃𝑆)
6928, 68rexlimddv 3167 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wrex 3076  cdif 3973  {csn 4648   class class class wbr 5166  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  -cneg 11521  cn 12293  2c2 12348  4c4 12350  cz 12639  +crp 13057   mod cmo 13920  cexp 14112  abscabs 15283  cdvds 16302   gcd cgcd 16540  cprime 16718  ℤ[i]cgz 16976   /L clgs 27356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813  df-pc 16884  df-gz 16977  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-imas 17568  df-qus 17569  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-mon1 26190  df-uc1p 26191  df-q1p 26192  df-r1p 26193  df-lgs 27357
This theorem is referenced by:  2sq  27492
  Copyright terms: Public domain W3C validator