Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcmplem Structured version   Visualization version   GIF version

Theorem zarcmplem 33871
Description: Lemma for zarcmp 33872. (Contributed by Thierry Arnoux, 2-Jul-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcmplem.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarcmplem (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝐽,𝑗   𝑗,𝑉,𝑖
Allowed substitution hints:   𝑆(𝑖,𝑗)

Proof of Theorem zarcmplem
Dummy variables 𝑘 𝑥 𝑦 𝑎 𝑙 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20154 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 zartop.1 . . . . 5 𝑆 = (Spec‘𝑅)
3 zartop.2 . . . . 5 𝐽 = (TopOpen‘𝑆)
4 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
52, 3, 4zar0ring 33868 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
61, 5sylan 580 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
7 0cmp 23281 . . 3 {∅} ∈ Comp
86, 7eqeltrdi 2836 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 ∈ Comp)
92, 3zartop 33866 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ Top)
10 zarcmplem.1 . . . . . . . . . . . . . . 15 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
11 fvex 6871 . . . . . . . . . . . . . . . 16 (LIdeal‘𝑅) ∈ V
1211mptex 7197 . . . . . . . . . . . . . . 15 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) ∈ V
1310, 12eqeltri 2824 . . . . . . . . . . . . . 14 𝑉 ∈ V
14 imaexg 7889 . . . . . . . . . . . . . 14 (𝑉 ∈ V → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
1513, 14mp1i 13 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
16 suppssdm 8156 . . . . . . . . . . . . . . 15 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
17 imass2 6073 . . . . . . . . . . . . . . 15 ((𝑎 supp (0g𝑅)) ⊆ dom 𝑎 → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1816, 17mp1i 13 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1910funmpt2 6555 . . . . . . . . . . . . . . 15 Fun 𝑉
20 ssidd 3970 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ dom 𝑎)
21 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)))
22 fvexd 6873 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (Base‘𝑅) ∈ V)
2313cnvex 7901 . . . . . . . . . . . . . . . . . . . . . 22 𝑉 ∈ V
2423imaex 7890 . . . . . . . . . . . . . . . . . . . . 21 (𝑉𝑥) ∈ V
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑉𝑥) ∈ V)
2622, 25elmapd 8813 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)) ↔ 𝑎:(𝑉𝑥)⟶(Base‘𝑅)))
2721, 26mpbid 232 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
2827fdmd 6698 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → dom 𝑎 = (𝑉𝑥))
2928adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 = (𝑉𝑥))
3020, 29sseqtrd 3983 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ (𝑉𝑥))
31 funimass2 6599 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ dom 𝑎 ⊆ (𝑉𝑥)) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3219, 30, 31sylancr 587 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3318, 32sstrd 3957 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ 𝑥)
3415, 33elpwd 4569 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ 𝒫 𝑥)
35 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎 finSupp (0g𝑅))
3635fsuppimpd 9320 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ∈ Fin)
37 imafi 9264 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ∈ Fin) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3819, 36, 37sylancr 587 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3934, 38elind 4163 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ (𝒫 𝑥 ∩ Fin))
40 inteq 4913 . . . . . . . . . . . . 13 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))))
4140eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4241adantl 481 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅)))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4316, 29sseqtrid 3989 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
44 cnvimass 6053 . . . . . . . . . . . . . 14 (𝑉𝑥) ⊆ dom 𝑉
4543, 44sstrdi 3959 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ dom 𝑉)
46 intimafv 32634 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ⊆ dom 𝑉) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
4719, 45, 46sylancr 587 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
48 simplll 774 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ CRing)
4948crngringd 20155 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ Ring)
5049ad4antr 732 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ Ring)
51 fvex 6871 . . . . . . . . . . . . . . . 16 (PrmIdeal‘𝑅) ∈ V
5251rabex 5294 . . . . . . . . . . . . . . 15 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
5352, 10dmmpti 6662 . . . . . . . . . . . . . 14 dom 𝑉 = (LIdeal‘𝑅)
5445, 53sseqtrdi 3987 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅))
55 simp-7r 789 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (♯‘(Base‘𝑅)) ≠ 1)
56 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (1r𝑅) = (𝑅 Σg 𝑎))
57 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (0g𝑅) = (0g𝑅)
58 ringcmn 20191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
591, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
6059ad8antr 740 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑅 ∈ CMnd)
6124a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑉𝑥) ∈ V)
6227ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
63 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) = ∅)
64 ssidd 3970 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → ∅ ⊆ ∅)
6563, 64eqsstrd 3981 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) ⊆ ∅)
6635adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎 finSupp (0g𝑅))
674, 57, 60, 61, 62, 65, 66gsumres 19843 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg 𝑎))
68 res0 5954 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ↾ ∅) = ∅
6968oveq2i 7398 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg ∅)
7057gsum0 18611 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
7169, 70eqtri 2752 . . . . . . . . . . . . . . . . . . 19 (𝑅 Σg (𝑎 ↾ ∅)) = (0g𝑅)
7267, 71eqtr3di 2779 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg 𝑎) = (0g𝑅))
7356, 72eqtr2d 2765 . . . . . . . . . . . . . . . . 17 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (0g𝑅) = (1r𝑅))
74 eqid 2729 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
754, 57, 7401eq0ring 20439 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
7650, 73, 75syl2an2r 685 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (Base‘𝑅) = {(0g𝑅)})
7776fveq2d 6862 . . . . . . . . . . . . . . 15 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = (♯‘{(0g𝑅)}))
78 fvex 6871 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
79 hashsng 14334 . . . . . . . . . . . . . . . 16 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . . . 15 (♯‘{(0g𝑅)}) = 1
8177, 80eqtrdi 2780 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = 1)
8255, 81mteqand 3016 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ≠ ∅)
83 eqid 2729 . . . . . . . . . . . . . 14 (RSpan‘𝑅) = (RSpan‘𝑅)
8410, 83zarclsiin 33861 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅) ∧ (𝑎 supp (0g𝑅)) ≠ ∅) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
8550, 54, 82, 84syl3anc 1373 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
86 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑙((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎))
87 nfra1 3261 . . . . . . . . . . . . . . . . . . . 20 𝑙𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙
8886, 87nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑙(((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)
8954sselda 3946 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ∈ (LIdeal‘𝑅))
90 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (LIdeal‘𝑅) = (LIdeal‘𝑅)
914, 90lidlss 21122 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (LIdeal‘𝑅) → 𝑙 ⊆ (Base‘𝑅))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ⊆ (Base‘𝑅))
9392ex 412 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑙 ∈ (𝑎 supp (0g𝑅)) → 𝑙 ⊆ (Base‘𝑅)))
9488, 93ralrimi 3235 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
95 unissb 4903 . . . . . . . . . . . . . . . . . 18 ( (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
9694, 95sylibr 234 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅))
9783, 4, 90rspcl 21145 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
9850, 96, 97syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
994, 90lidlss 21122 . . . . . . . . . . . . . . . 16 (((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10098, 99syl 17 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10183, 4, 74rsp1 21147 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10250, 101syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10327adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
104103, 43fssresd 6727 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
105 fvex 6871 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑅) ∈ V
106 ovex 7420 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 supp (0g𝑅)) ∈ V
107105, 106elmap 8844 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
108104, 107sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))))
109 breq1 5110 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏 finSupp (0g𝑅) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅)))
110 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑅 Σg 𝑏) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
111110eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((1r𝑅) = (𝑅 Σg 𝑏) ↔ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅))))))
112 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏𝑘) = ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘))
113112eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏𝑘) ∈ 𝑘 ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
114113ralbidv 3156 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘 ↔ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
115109, 111, 1143anbi123d 1438 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
116115adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅)))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
117 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (0g𝑅) ∈ V)
11835, 117fsuppres 9344 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅))
119 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg 𝑎))
12050, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ CMnd)
12124a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉𝑥) ∈ V)
122 ssidd 3970 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑎 supp (0g𝑅)))
1234, 57, 120, 121, 103, 122, 35gsumres 19843 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) = (𝑅 Σg 𝑎))
124119, 123eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
125 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑎 supp (0g𝑅)))
126125fvresd 6878 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) = (𝑎𝑘))
12716, 28sseqtrid 3989 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
128127sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑉𝑥))
129 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘 → (𝑎𝑙) = (𝑎𝑘))
130 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘𝑙 = 𝑘)
131129, 130eleq12d 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 = 𝑘 → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
132131adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ 𝑙 = 𝑘) → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
133128, 132rspcdv 3580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → (𝑎𝑘) ∈ 𝑘))
134133imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎𝑘) ∈ 𝑘)
135134an32s 652 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (𝑎𝑘) ∈ 𝑘)
136126, 135eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
137136ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
138118, 124, 1373jca 1128 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
139108, 116, 138rspcedvd 3590 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘))
140 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (.r𝑅) = (.r𝑅)
14183, 4, 57, 140, 50, 54elrspunidl 33399 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ↔ ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘)))
142139, 141mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
143142snssd 4773 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14483, 90rspssp 21149 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) ∧ {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14550, 98, 143, 144syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
146102, 145eqsstrrd 3982 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (Base‘𝑅) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
147100, 146eqssd 3964 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) = (Base‘𝑅))
148147fveq2d 6862 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = (𝑉‘(Base‘𝑅)))
14990, 4lidl1 21143 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (LIdeal‘𝑅))
1501, 149syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
15110, 4zarcls1 33859 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
152150, 151mpdan 687 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
1534, 152mpbiri 258 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
154153ad7antr 738 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘(Base‘𝑅)) = ∅)
155148, 154eqtrd 2764 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = ∅)
15647, 85, 1553eqtrrd 2769 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∅ = (𝑉 “ (𝑎 supp (0g𝑅))))
15739, 42, 156rspcedvd 3590 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
158157exp41 434 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) → (𝑎 finSupp (0g𝑅) → ((1r𝑅) = (𝑅 Σg 𝑎) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))))
1591583imp2 1350 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ (𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
1604, 74ringidcl 20174 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
16149, 160syl 17 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ (Base‘𝑅))
162 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 (Clsd‘𝐽))
163 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
1642, 3, 163, 10zartopn 33865 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) ∧ ran 𝑉 = (Clsd‘𝐽)))
165164simprd 495 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ CRing → ran 𝑉 = (Clsd‘𝐽))
16648, 165syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ran 𝑉 = (Clsd‘𝐽))
167166pweqd 4580 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝒫 ran 𝑉 = 𝒫 (Clsd‘𝐽))
168162, 167eleqtrrd 2831 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 ran 𝑉)
169168elpwid 4572 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ⊆ ran 𝑉)
170 intimafv 32634 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ (𝑉𝑥) ⊆ dom 𝑉) → (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙))
17119, 44, 170mp2an 692 . . . . . . . . . . . . . 14 (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙)
172 funimacnv 6597 . . . . . . . . . . . . . . . . 17 (Fun 𝑉 → (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉))
17319, 172ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉)
174 dfss2 3932 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ran 𝑉 ↔ (𝑥 ∩ ran 𝑉) = 𝑥)
175174biimpi 216 . . . . . . . . . . . . . . . 16 (𝑥 ⊆ ran 𝑉 → (𝑥 ∩ ran 𝑉) = 𝑥)
176173, 175eqtrid 2776 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ran 𝑉 → (𝑉 “ (𝑉𝑥)) = 𝑥)
177176inteqd 4915 . . . . . . . . . . . . . 14 (𝑥 ⊆ ran 𝑉 (𝑉 “ (𝑉𝑥)) = 𝑥)
178171, 177eqtr3id 2778 . . . . . . . . . . . . 13 (𝑥 ⊆ ran 𝑉 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
179169, 178syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
18044a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ dom 𝑉)
181180, 53sseqtrdi 3987 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (LIdeal‘𝑅))
18219a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → Fun 𝑉)
183 inteq 4913 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → 𝑥 = ∅)
184 int0 4926 . . . . . . . . . . . . . . . . . 18 ∅ = V
185183, 184eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → 𝑥 = V)
186 vn0 4308 . . . . . . . . . . . . . . . . . 18 V ≠ ∅
187 neeq1 2987 . . . . . . . . . . . . . . . . . 18 ( 𝑥 = V → ( 𝑥 ≠ ∅ ↔ V ≠ ∅))
188186, 187mpbiri 258 . . . . . . . . . . . . . . . . 17 ( 𝑥 = V → 𝑥 ≠ ∅)
189185, 188syl 17 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → 𝑥 ≠ ∅)
190189necon2i 2959 . . . . . . . . . . . . . . 15 ( 𝑥 = ∅ → 𝑥 ≠ ∅)
191190adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ≠ ∅)
192 preiman0 32633 . . . . . . . . . . . . . 14 ((Fun 𝑉𝑥 ⊆ ran 𝑉𝑥 ≠ ∅) → (𝑉𝑥) ≠ ∅)
193182, 169, 191, 192syl3anc 1373 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ≠ ∅)
19410, 83zarclsiin 33861 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (LIdeal‘𝑅) ∧ (𝑉𝑥) ≠ ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
19549, 181, 193, 194syl3anc 1373 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
196 simpr 484 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 = ∅)
197179, 195, 1963eqtr3d 2772 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅)
198181sselda 3946 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ∈ (LIdeal‘𝑅))
199198, 91syl 17 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ⊆ (Base‘𝑅))
200199ralrimiva 3125 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
201 unissb 4903 . . . . . . . . . . . . . 14 ( (𝑉𝑥) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
202200, 201sylibr 234 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (Base‘𝑅))
20383, 4, 90rspcl 21145 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20449, 202, 203syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20510, 4zarcls1 33859 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅)) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
20648, 204, 205syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
207197, 206mpbid 232 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅))
208161, 207eleqtrrd 2831 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)))
20983, 4, 57, 140, 49, 181elrspunidl 33399 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)) ↔ ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)))
210208, 209mpbid 232 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙))
211159, 210r19.29a 3141 . . . . . . 7 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
212 0ex 5262 . . . . . . . 8 ∅ ∈ V
213 vex 3451 . . . . . . . 8 𝑥 ∈ V
214 elfi 9364 . . . . . . . 8 ((∅ ∈ V ∧ 𝑥 ∈ V) → (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))
215212, 213, 214mp2an 692 . . . . . . 7 (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
216211, 215sylibr 234 . . . . . 6 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∅ ∈ (fi‘𝑥))
217216ex 412 . . . . 5 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → ( 𝑥 = ∅ → ∅ ∈ (fi‘𝑥)))
218217necon3bd 2939 . . . 4 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
219218ralrimiva 3125 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
220 cmpfi 23295 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
221220biimpar 477 . . 3 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → 𝐽 ∈ Comp)
2229, 219, 221syl2an2r 685 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → 𝐽 ∈ Comp)
2238, 222pm2.61dane 3012 1 (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871   cint 4910   ciin 4956   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  ficfi 9361  1c1 11069  chash 14295  Basecbs 17179  .rcmulr 17221  TopOpenctopn 17384  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710  1rcur 20090  Ringcrg 20142  CRingccrg 20143  LIdealclidl 21116  RSpancrsp 21117  Topctop 22780  TopOnctopon 22797  Clsdccld 22903  Compccmp 23273  PrmIdealcprmidl 33406  Speccrspec 33852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lbs 20982  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-lpidl 21232  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-top 22781  df-topon 22798  df-cld 22906  df-cmp 23274  df-prmidl 33407  df-mxidl 33431  df-idlsrg 33472  df-rspec 33853
This theorem is referenced by:  zarcmp  33872
  Copyright terms: Public domain W3C validator