Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcmplem Structured version   Visualization version   GIF version

Theorem zarcmplem 33848
Description: Lemma for zarcmp 33849. (Contributed by Thierry Arnoux, 2-Jul-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcmplem.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarcmplem (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝐽,𝑗   𝑗,𝑉,𝑖
Allowed substitution hints:   𝑆(𝑖,𝑗)

Proof of Theorem zarcmplem
Dummy variables 𝑘 𝑥 𝑦 𝑎 𝑙 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20130 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 zartop.1 . . . . 5 𝑆 = (Spec‘𝑅)
3 zartop.2 . . . . 5 𝐽 = (TopOpen‘𝑆)
4 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
52, 3, 4zar0ring 33845 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
61, 5sylan 580 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
7 0cmp 23279 . . 3 {∅} ∈ Comp
86, 7eqeltrdi 2836 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 ∈ Comp)
92, 3zartop 33843 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ Top)
10 zarcmplem.1 . . . . . . . . . . . . . . 15 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
11 fvex 6835 . . . . . . . . . . . . . . . 16 (LIdeal‘𝑅) ∈ V
1211mptex 7159 . . . . . . . . . . . . . . 15 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) ∈ V
1310, 12eqeltri 2824 . . . . . . . . . . . . . 14 𝑉 ∈ V
14 imaexg 7846 . . . . . . . . . . . . . 14 (𝑉 ∈ V → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
1513, 14mp1i 13 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
16 suppssdm 8110 . . . . . . . . . . . . . . 15 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
17 imass2 6053 . . . . . . . . . . . . . . 15 ((𝑎 supp (0g𝑅)) ⊆ dom 𝑎 → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1816, 17mp1i 13 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1910funmpt2 6521 . . . . . . . . . . . . . . 15 Fun 𝑉
20 ssidd 3959 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ dom 𝑎)
21 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)))
22 fvexd 6837 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (Base‘𝑅) ∈ V)
2313cnvex 7858 . . . . . . . . . . . . . . . . . . . . . 22 𝑉 ∈ V
2423imaex 7847 . . . . . . . . . . . . . . . . . . . . 21 (𝑉𝑥) ∈ V
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑉𝑥) ∈ V)
2622, 25elmapd 8767 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)) ↔ 𝑎:(𝑉𝑥)⟶(Base‘𝑅)))
2721, 26mpbid 232 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
2827fdmd 6662 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → dom 𝑎 = (𝑉𝑥))
2928adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 = (𝑉𝑥))
3020, 29sseqtrd 3972 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ (𝑉𝑥))
31 funimass2 6565 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ dom 𝑎 ⊆ (𝑉𝑥)) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3219, 30, 31sylancr 587 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3318, 32sstrd 3946 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ 𝑥)
3415, 33elpwd 4557 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ 𝒫 𝑥)
35 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎 finSupp (0g𝑅))
3635fsuppimpd 9259 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ∈ Fin)
37 imafi 9204 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ∈ Fin) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3819, 36, 37sylancr 587 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3934, 38elind 4151 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ (𝒫 𝑥 ∩ Fin))
40 inteq 4899 . . . . . . . . . . . . 13 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))))
4140eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4241adantl 481 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅)))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4316, 29sseqtrid 3978 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
44 cnvimass 6033 . . . . . . . . . . . . . 14 (𝑉𝑥) ⊆ dom 𝑉
4543, 44sstrdi 3948 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ dom 𝑉)
46 intimafv 32653 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ⊆ dom 𝑉) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
4719, 45, 46sylancr 587 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
48 simplll 774 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ CRing)
4948crngringd 20131 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ Ring)
5049ad4antr 732 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ Ring)
51 fvex 6835 . . . . . . . . . . . . . . . 16 (PrmIdeal‘𝑅) ∈ V
5251rabex 5278 . . . . . . . . . . . . . . 15 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
5352, 10dmmpti 6626 . . . . . . . . . . . . . 14 dom 𝑉 = (LIdeal‘𝑅)
5445, 53sseqtrdi 3976 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅))
55 simp-7r 789 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (♯‘(Base‘𝑅)) ≠ 1)
56 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (1r𝑅) = (𝑅 Σg 𝑎))
57 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (0g𝑅) = (0g𝑅)
58 ringcmn 20167 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
591, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
6059ad8antr 740 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑅 ∈ CMnd)
6124a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑉𝑥) ∈ V)
6227ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
63 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) = ∅)
64 ssidd 3959 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → ∅ ⊆ ∅)
6563, 64eqsstrd 3970 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) ⊆ ∅)
6635adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎 finSupp (0g𝑅))
674, 57, 60, 61, 62, 65, 66gsumres 19792 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg 𝑎))
68 res0 5934 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ↾ ∅) = ∅
6968oveq2i 7360 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg ∅)
7057gsum0 18558 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
7169, 70eqtri 2752 . . . . . . . . . . . . . . . . . . 19 (𝑅 Σg (𝑎 ↾ ∅)) = (0g𝑅)
7267, 71eqtr3di 2779 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg 𝑎) = (0g𝑅))
7356, 72eqtr2d 2765 . . . . . . . . . . . . . . . . 17 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (0g𝑅) = (1r𝑅))
74 eqid 2729 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
754, 57, 7401eq0ring 20415 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
7650, 73, 75syl2an2r 685 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (Base‘𝑅) = {(0g𝑅)})
7776fveq2d 6826 . . . . . . . . . . . . . . 15 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = (♯‘{(0g𝑅)}))
78 fvex 6835 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
79 hashsng 14276 . . . . . . . . . . . . . . . 16 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . . . 15 (♯‘{(0g𝑅)}) = 1
8177, 80eqtrdi 2780 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = 1)
8255, 81mteqand 3016 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ≠ ∅)
83 eqid 2729 . . . . . . . . . . . . . 14 (RSpan‘𝑅) = (RSpan‘𝑅)
8410, 83zarclsiin 33838 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅) ∧ (𝑎 supp (0g𝑅)) ≠ ∅) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
8550, 54, 82, 84syl3anc 1373 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
86 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑙((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎))
87 nfra1 3253 . . . . . . . . . . . . . . . . . . . 20 𝑙𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙
8886, 87nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑙(((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)
8954sselda 3935 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ∈ (LIdeal‘𝑅))
90 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (LIdeal‘𝑅) = (LIdeal‘𝑅)
914, 90lidlss 21119 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (LIdeal‘𝑅) → 𝑙 ⊆ (Base‘𝑅))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ⊆ (Base‘𝑅))
9392ex 412 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑙 ∈ (𝑎 supp (0g𝑅)) → 𝑙 ⊆ (Base‘𝑅)))
9488, 93ralrimi 3227 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
95 unissb 4890 . . . . . . . . . . . . . . . . . 18 ( (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
9694, 95sylibr 234 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅))
9783, 4, 90rspcl 21142 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
9850, 96, 97syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
994, 90lidlss 21119 . . . . . . . . . . . . . . . 16 (((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10098, 99syl 17 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10183, 4, 74rsp1 21144 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10250, 101syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10327adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
104103, 43fssresd 6691 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
105 fvex 6835 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑅) ∈ V
106 ovex 7382 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 supp (0g𝑅)) ∈ V
107105, 106elmap 8798 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
108104, 107sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))))
109 breq1 5095 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏 finSupp (0g𝑅) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅)))
110 oveq2 7357 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑅 Σg 𝑏) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
111110eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((1r𝑅) = (𝑅 Σg 𝑏) ↔ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅))))))
112 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏𝑘) = ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘))
113112eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏𝑘) ∈ 𝑘 ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
114113ralbidv 3152 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘 ↔ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
115109, 111, 1143anbi123d 1438 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
116115adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅)))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
117 fvexd 6837 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (0g𝑅) ∈ V)
11835, 117fsuppres 9283 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅))
119 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg 𝑎))
12050, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ CMnd)
12124a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉𝑥) ∈ V)
122 ssidd 3959 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑎 supp (0g𝑅)))
1234, 57, 120, 121, 103, 122, 35gsumres 19792 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) = (𝑅 Σg 𝑎))
124119, 123eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
125 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑎 supp (0g𝑅)))
126125fvresd 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) = (𝑎𝑘))
12716, 28sseqtrid 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
128127sselda 3935 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑉𝑥))
129 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘 → (𝑎𝑙) = (𝑎𝑘))
130 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘𝑙 = 𝑘)
131129, 130eleq12d 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 = 𝑘 → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
132131adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ 𝑙 = 𝑘) → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
133128, 132rspcdv 3569 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → (𝑎𝑘) ∈ 𝑘))
134133imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎𝑘) ∈ 𝑘)
135134an32s 652 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (𝑎𝑘) ∈ 𝑘)
136126, 135eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
137136ralrimiva 3121 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
138118, 124, 1373jca 1128 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
139108, 116, 138rspcedvd 3579 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘))
140 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (.r𝑅) = (.r𝑅)
14183, 4, 57, 140, 50, 54elrspunidl 33365 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ↔ ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘)))
142139, 141mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
143142snssd 4760 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14483, 90rspssp 21146 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) ∧ {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14550, 98, 143, 144syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
146102, 145eqsstrrd 3971 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (Base‘𝑅) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
147100, 146eqssd 3953 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) = (Base‘𝑅))
148147fveq2d 6826 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = (𝑉‘(Base‘𝑅)))
14990, 4lidl1 21140 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (LIdeal‘𝑅))
1501, 149syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
15110, 4zarcls1 33836 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
152150, 151mpdan 687 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
1534, 152mpbiri 258 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
154153ad7antr 738 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘(Base‘𝑅)) = ∅)
155148, 154eqtrd 2764 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = ∅)
15647, 85, 1553eqtrrd 2769 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∅ = (𝑉 “ (𝑎 supp (0g𝑅))))
15739, 42, 156rspcedvd 3579 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
158157exp41 434 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) → (𝑎 finSupp (0g𝑅) → ((1r𝑅) = (𝑅 Σg 𝑎) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))))
1591583imp2 1350 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ (𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
1604, 74ringidcl 20150 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
16149, 160syl 17 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ (Base‘𝑅))
162 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 (Clsd‘𝐽))
163 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
1642, 3, 163, 10zartopn 33842 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) ∧ ran 𝑉 = (Clsd‘𝐽)))
165164simprd 495 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ CRing → ran 𝑉 = (Clsd‘𝐽))
16648, 165syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ran 𝑉 = (Clsd‘𝐽))
167166pweqd 4568 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝒫 ran 𝑉 = 𝒫 (Clsd‘𝐽))
168162, 167eleqtrrd 2831 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 ran 𝑉)
169168elpwid 4560 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ⊆ ran 𝑉)
170 intimafv 32653 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ (𝑉𝑥) ⊆ dom 𝑉) → (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙))
17119, 44, 170mp2an 692 . . . . . . . . . . . . . 14 (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙)
172 funimacnv 6563 . . . . . . . . . . . . . . . . 17 (Fun 𝑉 → (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉))
17319, 172ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉)
174 dfss2 3921 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ran 𝑉 ↔ (𝑥 ∩ ran 𝑉) = 𝑥)
175174biimpi 216 . . . . . . . . . . . . . . . 16 (𝑥 ⊆ ran 𝑉 → (𝑥 ∩ ran 𝑉) = 𝑥)
176173, 175eqtrid 2776 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ran 𝑉 → (𝑉 “ (𝑉𝑥)) = 𝑥)
177176inteqd 4901 . . . . . . . . . . . . . 14 (𝑥 ⊆ ran 𝑉 (𝑉 “ (𝑉𝑥)) = 𝑥)
178171, 177eqtr3id 2778 . . . . . . . . . . . . 13 (𝑥 ⊆ ran 𝑉 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
179169, 178syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
18044a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ dom 𝑉)
181180, 53sseqtrdi 3976 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (LIdeal‘𝑅))
18219a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → Fun 𝑉)
183 inteq 4899 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → 𝑥 = ∅)
184 int0 4912 . . . . . . . . . . . . . . . . . 18 ∅ = V
185183, 184eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → 𝑥 = V)
186 vn0 4296 . . . . . . . . . . . . . . . . . 18 V ≠ ∅
187 neeq1 2987 . . . . . . . . . . . . . . . . . 18 ( 𝑥 = V → ( 𝑥 ≠ ∅ ↔ V ≠ ∅))
188186, 187mpbiri 258 . . . . . . . . . . . . . . . . 17 ( 𝑥 = V → 𝑥 ≠ ∅)
189185, 188syl 17 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → 𝑥 ≠ ∅)
190189necon2i 2959 . . . . . . . . . . . . . . 15 ( 𝑥 = ∅ → 𝑥 ≠ ∅)
191190adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ≠ ∅)
192 preiman0 32652 . . . . . . . . . . . . . 14 ((Fun 𝑉𝑥 ⊆ ran 𝑉𝑥 ≠ ∅) → (𝑉𝑥) ≠ ∅)
193182, 169, 191, 192syl3anc 1373 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ≠ ∅)
19410, 83zarclsiin 33838 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (LIdeal‘𝑅) ∧ (𝑉𝑥) ≠ ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
19549, 181, 193, 194syl3anc 1373 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
196 simpr 484 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 = ∅)
197179, 195, 1963eqtr3d 2772 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅)
198181sselda 3935 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ∈ (LIdeal‘𝑅))
199198, 91syl 17 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ⊆ (Base‘𝑅))
200199ralrimiva 3121 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
201 unissb 4890 . . . . . . . . . . . . . 14 ( (𝑉𝑥) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
202200, 201sylibr 234 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (Base‘𝑅))
20383, 4, 90rspcl 21142 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20449, 202, 203syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20510, 4zarcls1 33836 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅)) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
20648, 204, 205syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
207197, 206mpbid 232 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅))
208161, 207eleqtrrd 2831 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)))
20983, 4, 57, 140, 49, 181elrspunidl 33365 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)) ↔ ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)))
210208, 209mpbid 232 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙))
211159, 210r19.29a 3137 . . . . . . 7 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
212 0ex 5246 . . . . . . . 8 ∅ ∈ V
213 vex 3440 . . . . . . . 8 𝑥 ∈ V
214 elfi 9303 . . . . . . . 8 ((∅ ∈ V ∧ 𝑥 ∈ V) → (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))
215212, 213, 214mp2an 692 . . . . . . 7 (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
216211, 215sylibr 234 . . . . . 6 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∅ ∈ (fi‘𝑥))
217216ex 412 . . . . 5 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → ( 𝑥 = ∅ → ∅ ∈ (fi‘𝑥)))
218217necon3bd 2939 . . . 4 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
219218ralrimiva 3121 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
220 cmpfi 23293 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
221220biimpar 477 . . 3 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → 𝐽 ∈ Comp)
2229, 219, 221syl2an2r 685 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → 𝐽 ∈ Comp)
2238, 222pm2.61dane 3012 1 (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577   cuni 4858   cint 4896   ciin 4942   class class class wbr 5092  cmpt 5173  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349   supp csupp 8093  m cmap 8753  Fincfn 8872   finSupp cfsupp 9251  ficfi 9300  1c1 11010  chash 14237  Basecbs 17120  .rcmulr 17162  TopOpenctopn 17325  0gc0g 17343   Σg cgsu 17344  CMndccmn 19659  1rcur 20066  Ringcrg 20118  CRingccrg 20119  LIdealclidl 21113  RSpancrsp 21114  Topctop 22778  TopOnctopon 22795  Clsdccld 22901  Compccmp 23271  PrmIdealcprmidl 33372  Speccrspec 33829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-rpss 7659  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-oi 9402  df-r1 9660  df-rank 9661  df-dju 9797  df-card 9835  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lmhm 20926  df-lbs 20979  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-lpidl 21229  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-dsmm 21639  df-frlm 21654  df-uvc 21690  df-top 22779  df-topon 22796  df-cld 22904  df-cmp 23272  df-prmidl 33373  df-mxidl 33397  df-idlsrg 33438  df-rspec 33830
This theorem is referenced by:  zarcmp  33849
  Copyright terms: Public domain W3C validator