Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcmplem Structured version   Visualization version   GIF version

Theorem zarcmplem 33827
Description: Lemma for zarcmp 33828. (Contributed by Thierry Arnoux, 2-Jul-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcmplem.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarcmplem (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝐽,𝑗   𝑗,𝑉,𝑖
Allowed substitution hints:   𝑆(𝑖,𝑗)

Proof of Theorem zarcmplem
Dummy variables 𝑘 𝑥 𝑦 𝑎 𝑙 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20272 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 zartop.1 . . . . 5 𝑆 = (Spec‘𝑅)
3 zartop.2 . . . . 5 𝐽 = (TopOpen‘𝑆)
4 eqid 2740 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
52, 3, 4zar0ring 33824 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
61, 5sylan 579 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
7 0cmp 23423 . . 3 {∅} ∈ Comp
86, 7eqeltrdi 2852 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 ∈ Comp)
92, 3zartop 33822 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ Top)
10 zarcmplem.1 . . . . . . . . . . . . . . 15 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
11 fvex 6933 . . . . . . . . . . . . . . . 16 (LIdeal‘𝑅) ∈ V
1211mptex 7260 . . . . . . . . . . . . . . 15 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) ∈ V
1310, 12eqeltri 2840 . . . . . . . . . . . . . 14 𝑉 ∈ V
14 imaexg 7953 . . . . . . . . . . . . . 14 (𝑉 ∈ V → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
1513, 14mp1i 13 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
16 suppssdm 8218 . . . . . . . . . . . . . . 15 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
17 imass2 6132 . . . . . . . . . . . . . . 15 ((𝑎 supp (0g𝑅)) ⊆ dom 𝑎 → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1816, 17mp1i 13 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1910funmpt2 6617 . . . . . . . . . . . . . . 15 Fun 𝑉
20 ssidd 4032 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ dom 𝑎)
21 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)))
22 fvexd 6935 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (Base‘𝑅) ∈ V)
2313cnvex 7965 . . . . . . . . . . . . . . . . . . . . . 22 𝑉 ∈ V
2423imaex 7954 . . . . . . . . . . . . . . . . . . . . 21 (𝑉𝑥) ∈ V
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑉𝑥) ∈ V)
2622, 25elmapd 8898 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)) ↔ 𝑎:(𝑉𝑥)⟶(Base‘𝑅)))
2721, 26mpbid 232 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
2827fdmd 6757 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → dom 𝑎 = (𝑉𝑥))
2928adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 = (𝑉𝑥))
3020, 29sseqtrd 4049 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ (𝑉𝑥))
31 funimass2 6661 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ dom 𝑎 ⊆ (𝑉𝑥)) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3219, 30, 31sylancr 586 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3318, 32sstrd 4019 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ 𝑥)
3415, 33elpwd 4628 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ 𝒫 𝑥)
35 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎 finSupp (0g𝑅))
3635fsuppimpd 9439 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ∈ Fin)
37 imafi 9381 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ∈ Fin) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3819, 36, 37sylancr 586 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3934, 38elind 4223 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ (𝒫 𝑥 ∩ Fin))
40 inteq 4973 . . . . . . . . . . . . 13 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))))
4140eqeq2d 2751 . . . . . . . . . . . 12 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4241adantl 481 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅)))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4316, 29sseqtrid 4061 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
44 cnvimass 6111 . . . . . . . . . . . . . 14 (𝑉𝑥) ⊆ dom 𝑉
4543, 44sstrdi 4021 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ dom 𝑉)
46 intimafv 32722 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ⊆ dom 𝑉) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
4719, 45, 46sylancr 586 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
48 simplll 774 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ CRing)
4948crngringd 20273 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ Ring)
5049ad4antr 731 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ Ring)
51 fvex 6933 . . . . . . . . . . . . . . . 16 (PrmIdeal‘𝑅) ∈ V
5251rabex 5357 . . . . . . . . . . . . . . 15 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
5352, 10dmmpti 6724 . . . . . . . . . . . . . 14 dom 𝑉 = (LIdeal‘𝑅)
5445, 53sseqtrdi 4059 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅))
55 simp-7r 789 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (♯‘(Base‘𝑅)) ≠ 1)
56 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (1r𝑅) = (𝑅 Σg 𝑎))
57 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (0g𝑅) = (0g𝑅)
58 ringcmn 20305 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
591, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
6059ad8antr 739 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑅 ∈ CMnd)
6124a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑉𝑥) ∈ V)
6227ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
63 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) = ∅)
64 ssidd 4032 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → ∅ ⊆ ∅)
6563, 64eqsstrd 4047 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) ⊆ ∅)
6635adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎 finSupp (0g𝑅))
674, 57, 60, 61, 62, 65, 66gsumres 19955 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg 𝑎))
68 res0 6013 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ↾ ∅) = ∅
6968oveq2i 7459 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg ∅)
7057gsum0 18722 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
7169, 70eqtri 2768 . . . . . . . . . . . . . . . . . . 19 (𝑅 Σg (𝑎 ↾ ∅)) = (0g𝑅)
7267, 71eqtr3di 2795 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg 𝑎) = (0g𝑅))
7356, 72eqtr2d 2781 . . . . . . . . . . . . . . . . 17 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (0g𝑅) = (1r𝑅))
74 eqid 2740 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
754, 57, 7401eq0ring 20556 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
7650, 73, 75syl2an2r 684 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (Base‘𝑅) = {(0g𝑅)})
7776fveq2d 6924 . . . . . . . . . . . . . . 15 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = (♯‘{(0g𝑅)}))
78 fvex 6933 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
79 hashsng 14418 . . . . . . . . . . . . . . . 16 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . . . 15 (♯‘{(0g𝑅)}) = 1
8177, 80eqtrdi 2796 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = 1)
8255, 81mteqand 3039 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ≠ ∅)
83 eqid 2740 . . . . . . . . . . . . . 14 (RSpan‘𝑅) = (RSpan‘𝑅)
8410, 83zarclsiin 33817 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅) ∧ (𝑎 supp (0g𝑅)) ≠ ∅) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
8550, 54, 82, 84syl3anc 1371 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
86 nfv 1913 . . . . . . . . . . . . . . . . . . . 20 𝑙((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎))
87 nfra1 3290 . . . . . . . . . . . . . . . . . . . 20 𝑙𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙
8886, 87nfan 1898 . . . . . . . . . . . . . . . . . . 19 𝑙(((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)
8954sselda 4008 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ∈ (LIdeal‘𝑅))
90 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (LIdeal‘𝑅) = (LIdeal‘𝑅)
914, 90lidlss 21245 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (LIdeal‘𝑅) → 𝑙 ⊆ (Base‘𝑅))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ⊆ (Base‘𝑅))
9392ex 412 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑙 ∈ (𝑎 supp (0g𝑅)) → 𝑙 ⊆ (Base‘𝑅)))
9488, 93ralrimi 3263 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
95 unissb 4963 . . . . . . . . . . . . . . . . . 18 ( (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
9694, 95sylibr 234 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅))
9783, 4, 90rspcl 21268 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
9850, 96, 97syl2anc 583 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
994, 90lidlss 21245 . . . . . . . . . . . . . . . 16 (((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10098, 99syl 17 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10183, 4, 74rsp1 21270 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10250, 101syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10327adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
104103, 43fssresd 6788 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
105 fvex 6933 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑅) ∈ V
106 ovex 7481 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 supp (0g𝑅)) ∈ V
107105, 106elmap 8929 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
108104, 107sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))))
109 breq1 5169 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏 finSupp (0g𝑅) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅)))
110 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑅 Σg 𝑏) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
111110eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((1r𝑅) = (𝑅 Σg 𝑏) ↔ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅))))))
112 fveq1 6919 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏𝑘) = ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘))
113112eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏𝑘) ∈ 𝑘 ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
114113ralbidv 3184 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘 ↔ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
115109, 111, 1143anbi123d 1436 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
116115adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅)))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
117 fvexd 6935 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (0g𝑅) ∈ V)
11835, 117fsuppres 9462 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅))
119 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg 𝑎))
12050, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ CMnd)
12124a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉𝑥) ∈ V)
122 ssidd 4032 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑎 supp (0g𝑅)))
1234, 57, 120, 121, 103, 122, 35gsumres 19955 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) = (𝑅 Σg 𝑎))
124119, 123eqtr4d 2783 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
125 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑎 supp (0g𝑅)))
126125fvresd 6940 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) = (𝑎𝑘))
12716, 28sseqtrid 4061 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
128127sselda 4008 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑉𝑥))
129 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘 → (𝑎𝑙) = (𝑎𝑘))
130 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘𝑙 = 𝑘)
131129, 130eleq12d 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 = 𝑘 → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
132131adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ 𝑙 = 𝑘) → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
133128, 132rspcdv 3627 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → (𝑎𝑘) ∈ 𝑘))
134133imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎𝑘) ∈ 𝑘)
135134an32s 651 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (𝑎𝑘) ∈ 𝑘)
136126, 135eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
137136ralrimiva 3152 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
138118, 124, 1373jca 1128 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
139108, 116, 138rspcedvd 3637 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘))
140 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (.r𝑅) = (.r𝑅)
14183, 4, 57, 140, 50, 54elrspunidl 33421 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ↔ ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘)))
142139, 141mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
143142snssd 4834 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14483, 90rspssp 21272 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) ∧ {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14550, 98, 143, 144syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
146102, 145eqsstrrd 4048 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (Base‘𝑅) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
147100, 146eqssd 4026 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) = (Base‘𝑅))
148147fveq2d 6924 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = (𝑉‘(Base‘𝑅)))
14990, 4lidl1 21266 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (LIdeal‘𝑅))
1501, 149syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
15110, 4zarcls1 33815 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
152150, 151mpdan 686 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
1534, 152mpbiri 258 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
154153ad7antr 737 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘(Base‘𝑅)) = ∅)
155148, 154eqtrd 2780 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = ∅)
15647, 85, 1553eqtrrd 2785 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∅ = (𝑉 “ (𝑎 supp (0g𝑅))))
15739, 42, 156rspcedvd 3637 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
158157exp41 434 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) → (𝑎 finSupp (0g𝑅) → ((1r𝑅) = (𝑅 Σg 𝑎) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))))
1591583imp2 1349 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ (𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
1604, 74ringidcl 20289 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
16149, 160syl 17 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ (Base‘𝑅))
162 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 (Clsd‘𝐽))
163 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
1642, 3, 163, 10zartopn 33821 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) ∧ ran 𝑉 = (Clsd‘𝐽)))
165164simprd 495 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ CRing → ran 𝑉 = (Clsd‘𝐽))
16648, 165syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ran 𝑉 = (Clsd‘𝐽))
167166pweqd 4639 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝒫 ran 𝑉 = 𝒫 (Clsd‘𝐽))
168162, 167eleqtrrd 2847 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 ran 𝑉)
169168elpwid 4631 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ⊆ ran 𝑉)
170 intimafv 32722 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ (𝑉𝑥) ⊆ dom 𝑉) → (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙))
17119, 44, 170mp2an 691 . . . . . . . . . . . . . 14 (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙)
172 funimacnv 6659 . . . . . . . . . . . . . . . . 17 (Fun 𝑉 → (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉))
17319, 172ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉)
174 dfss2 3994 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ran 𝑉 ↔ (𝑥 ∩ ran 𝑉) = 𝑥)
175174biimpi 216 . . . . . . . . . . . . . . . 16 (𝑥 ⊆ ran 𝑉 → (𝑥 ∩ ran 𝑉) = 𝑥)
176173, 175eqtrid 2792 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ran 𝑉 → (𝑉 “ (𝑉𝑥)) = 𝑥)
177176inteqd 4975 . . . . . . . . . . . . . 14 (𝑥 ⊆ ran 𝑉 (𝑉 “ (𝑉𝑥)) = 𝑥)
178171, 177eqtr3id 2794 . . . . . . . . . . . . 13 (𝑥 ⊆ ran 𝑉 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
179169, 178syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
18044a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ dom 𝑉)
181180, 53sseqtrdi 4059 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (LIdeal‘𝑅))
18219a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → Fun 𝑉)
183 inteq 4973 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → 𝑥 = ∅)
184 int0 4986 . . . . . . . . . . . . . . . . . 18 ∅ = V
185183, 184eqtrdi 2796 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → 𝑥 = V)
186 vn0 4368 . . . . . . . . . . . . . . . . . 18 V ≠ ∅
187 neeq1 3009 . . . . . . . . . . . . . . . . . 18 ( 𝑥 = V → ( 𝑥 ≠ ∅ ↔ V ≠ ∅))
188186, 187mpbiri 258 . . . . . . . . . . . . . . . . 17 ( 𝑥 = V → 𝑥 ≠ ∅)
189185, 188syl 17 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → 𝑥 ≠ ∅)
190189necon2i 2981 . . . . . . . . . . . . . . 15 ( 𝑥 = ∅ → 𝑥 ≠ ∅)
191190adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ≠ ∅)
192 preiman0 32721 . . . . . . . . . . . . . 14 ((Fun 𝑉𝑥 ⊆ ran 𝑉𝑥 ≠ ∅) → (𝑉𝑥) ≠ ∅)
193182, 169, 191, 192syl3anc 1371 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ≠ ∅)
19410, 83zarclsiin 33817 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (LIdeal‘𝑅) ∧ (𝑉𝑥) ≠ ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
19549, 181, 193, 194syl3anc 1371 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
196 simpr 484 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 = ∅)
197179, 195, 1963eqtr3d 2788 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅)
198181sselda 4008 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ∈ (LIdeal‘𝑅))
199198, 91syl 17 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ⊆ (Base‘𝑅))
200199ralrimiva 3152 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
201 unissb 4963 . . . . . . . . . . . . . 14 ( (𝑉𝑥) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
202200, 201sylibr 234 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (Base‘𝑅))
20383, 4, 90rspcl 21268 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20449, 202, 203syl2anc 583 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20510, 4zarcls1 33815 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅)) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
20648, 204, 205syl2anc 583 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
207197, 206mpbid 232 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅))
208161, 207eleqtrrd 2847 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)))
20983, 4, 57, 140, 49, 181elrspunidl 33421 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)) ↔ ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)))
210208, 209mpbid 232 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙))
211159, 210r19.29a 3168 . . . . . . 7 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
212 0ex 5325 . . . . . . . 8 ∅ ∈ V
213 vex 3492 . . . . . . . 8 𝑥 ∈ V
214 elfi 9482 . . . . . . . 8 ((∅ ∈ V ∧ 𝑥 ∈ V) → (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))
215212, 213, 214mp2an 691 . . . . . . 7 (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
216211, 215sylibr 234 . . . . . 6 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∅ ∈ (fi‘𝑥))
217216ex 412 . . . . 5 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → ( 𝑥 = ∅ → ∅ ∈ (fi‘𝑥)))
218217necon3bd 2960 . . . 4 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
219218ralrimiva 3152 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
220 cmpfi 23437 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
221220biimpar 477 . . 3 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → 𝐽 ∈ Comp)
2229, 219, 221syl2an2r 684 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → 𝐽 ∈ Comp)
2238, 222pm2.61dane 3035 1 (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   cint 4970   ciin 5016   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  ficfi 9479  1c1 11185  chash 14379  Basecbs 17258  .rcmulr 17312  TopOpenctopn 17481  0gc0g 17499   Σg cgsu 17500  CMndccmn 19822  1rcur 20208  Ringcrg 20260  CRingccrg 20261  LIdealclidl 21239  RSpancrsp 21240  Topctop 22920  TopOnctopon 22937  Clsdccld 23045  Compccmp 23415  PrmIdealcprmidl 33428  Speccrspec 33808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-oi 9579  df-r1 9833  df-rank 9834  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lbs 21097  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-lpidl 21355  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-uvc 21826  df-top 22921  df-topon 22938  df-cld 23048  df-cmp 23416  df-prmidl 33429  df-mxidl 33453  df-idlsrg 33494  df-rspec 33809
This theorem is referenced by:  zarcmp  33828
  Copyright terms: Public domain W3C validator