Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcmplem Structured version   Visualization version   GIF version

Theorem zarcmplem 32462
Description: Lemma for zarcmp 32463. (Contributed by Thierry Arnoux, 2-Jul-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcmplem.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarcmplem (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝐽,𝑗   𝑗,𝑉,𝑖
Allowed substitution hints:   𝑆(𝑖,𝑗)

Proof of Theorem zarcmplem
Dummy variables 𝑘 𝑥 𝑦 𝑎 𝑙 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19976 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 zartop.1 . . . . 5 𝑆 = (Spec‘𝑅)
3 zartop.2 . . . . 5 𝐽 = (TopOpen‘𝑆)
4 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
52, 3, 4zar0ring 32459 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
61, 5sylan 580 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
7 0cmp 22745 . . 3 {∅} ∈ Comp
86, 7eqeltrdi 2846 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 ∈ Comp)
92, 3zartop 32457 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ Top)
10 zarcmplem.1 . . . . . . . . . . . . . . 15 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
11 fvex 6855 . . . . . . . . . . . . . . . 16 (LIdeal‘𝑅) ∈ V
1211mptex 7173 . . . . . . . . . . . . . . 15 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) ∈ V
1310, 12eqeltri 2834 . . . . . . . . . . . . . 14 𝑉 ∈ V
14 imaexg 7852 . . . . . . . . . . . . . 14 (𝑉 ∈ V → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
1513, 14mp1i 13 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
16 suppssdm 8108 . . . . . . . . . . . . . . 15 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
17 imass2 6054 . . . . . . . . . . . . . . 15 ((𝑎 supp (0g𝑅)) ⊆ dom 𝑎 → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1816, 17mp1i 13 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1910funmpt2 6540 . . . . . . . . . . . . . . 15 Fun 𝑉
20 ssidd 3967 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ dom 𝑎)
21 simpllr 774 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)))
22 fvexd 6857 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (Base‘𝑅) ∈ V)
2313cnvex 7862 . . . . . . . . . . . . . . . . . . . . . 22 𝑉 ∈ V
2423imaex 7853 . . . . . . . . . . . . . . . . . . . . 21 (𝑉𝑥) ∈ V
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑉𝑥) ∈ V)
2622, 25elmapd 8779 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)) ↔ 𝑎:(𝑉𝑥)⟶(Base‘𝑅)))
2721, 26mpbid 231 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
2827fdmd 6679 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → dom 𝑎 = (𝑉𝑥))
2928adantr 481 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 = (𝑉𝑥))
3020, 29sseqtrd 3984 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ (𝑉𝑥))
31 funimass2 6584 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ dom 𝑎 ⊆ (𝑉𝑥)) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3219, 30, 31sylancr 587 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3318, 32sstrd 3954 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ 𝑥)
3415, 33elpwd 4566 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ 𝒫 𝑥)
35 simpllr 774 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎 finSupp (0g𝑅))
3635fsuppimpd 9312 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ∈ Fin)
37 imafi 9119 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ∈ Fin) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3819, 36, 37sylancr 587 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3934, 38elind 4154 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ (𝒫 𝑥 ∩ Fin))
40 inteq 4910 . . . . . . . . . . . . 13 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))))
4140eqeq2d 2747 . . . . . . . . . . . 12 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4241adantl 482 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅)))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4316, 29sseqtrid 3996 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
44 cnvimass 6033 . . . . . . . . . . . . . 14 (𝑉𝑥) ⊆ dom 𝑉
4543, 44sstrdi 3956 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ dom 𝑉)
46 intimafv 31624 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ⊆ dom 𝑉) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
4719, 45, 46sylancr 587 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
48 simplll 773 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ CRing)
4948crngringd 19977 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ Ring)
5049ad4antr 730 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ Ring)
51 fvex 6855 . . . . . . . . . . . . . . . 16 (PrmIdeal‘𝑅) ∈ V
5251rabex 5289 . . . . . . . . . . . . . . 15 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
5352, 10dmmpti 6645 . . . . . . . . . . . . . 14 dom 𝑉 = (LIdeal‘𝑅)
5445, 53sseqtrdi 3994 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅))
55 simp-7r 788 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (♯‘(Base‘𝑅)) ≠ 1)
56 simpllr 774 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (1r𝑅) = (𝑅 Σg 𝑎))
57 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (0g𝑅) = (0g𝑅)
58 ringcmn 20003 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
591, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
6059ad8antr 738 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑅 ∈ CMnd)
6124a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑉𝑥) ∈ V)
6227ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
63 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) = ∅)
64 ssidd 3967 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → ∅ ⊆ ∅)
6563, 64eqsstrd 3982 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) ⊆ ∅)
6635adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎 finSupp (0g𝑅))
674, 57, 60, 61, 62, 65, 66gsumres 19690 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg 𝑎))
68 res0 5941 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ↾ ∅) = ∅
6968oveq2i 7368 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg ∅)
7057gsum0 18539 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
7169, 70eqtri 2764 . . . . . . . . . . . . . . . . . . 19 (𝑅 Σg (𝑎 ↾ ∅)) = (0g𝑅)
7267, 71eqtr3di 2791 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg 𝑎) = (0g𝑅))
7356, 72eqtr2d 2777 . . . . . . . . . . . . . . . . 17 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (0g𝑅) = (1r𝑅))
74 eqid 2736 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
754, 57, 7401eq0ring 20742 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
7650, 73, 75syl2an2r 683 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (Base‘𝑅) = {(0g𝑅)})
7776fveq2d 6846 . . . . . . . . . . . . . . 15 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = (♯‘{(0g𝑅)}))
78 fvex 6855 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
79 hashsng 14269 . . . . . . . . . . . . . . . 16 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . . . 15 (♯‘{(0g𝑅)}) = 1
8177, 80eqtrdi 2792 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = 1)
8255, 81mteqand 3048 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ≠ ∅)
83 eqid 2736 . . . . . . . . . . . . . 14 (RSpan‘𝑅) = (RSpan‘𝑅)
8410, 83zarclsiin 32452 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅) ∧ (𝑎 supp (0g𝑅)) ≠ ∅) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
8550, 54, 82, 84syl3anc 1371 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
86 nfv 1917 . . . . . . . . . . . . . . . . . . . 20 𝑙((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎))
87 nfra1 3267 . . . . . . . . . . . . . . . . . . . 20 𝑙𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙
8886, 87nfan 1902 . . . . . . . . . . . . . . . . . . 19 𝑙(((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)
8954sselda 3944 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ∈ (LIdeal‘𝑅))
90 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (LIdeal‘𝑅) = (LIdeal‘𝑅)
914, 90lidlss 20680 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (LIdeal‘𝑅) → 𝑙 ⊆ (Base‘𝑅))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ⊆ (Base‘𝑅))
9392ex 413 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑙 ∈ (𝑎 supp (0g𝑅)) → 𝑙 ⊆ (Base‘𝑅)))
9488, 93ralrimi 3240 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
95 unissb 4900 . . . . . . . . . . . . . . . . . 18 ( (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
9694, 95sylibr 233 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅))
9783, 4, 90rspcl 20692 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
9850, 96, 97syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
994, 90lidlss 20680 . . . . . . . . . . . . . . . 16 (((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10098, 99syl 17 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10183, 4, 74rsp1 20694 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10250, 101syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10327adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
104103, 43fssresd 6709 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
105 fvex 6855 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑅) ∈ V
106 ovex 7390 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 supp (0g𝑅)) ∈ V
107105, 106elmap 8809 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
108104, 107sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))))
109 breq1 5108 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏 finSupp (0g𝑅) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅)))
110 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑅 Σg 𝑏) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
111110eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((1r𝑅) = (𝑅 Σg 𝑏) ↔ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅))))))
112 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏𝑘) = ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘))
113112eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏𝑘) ∈ 𝑘 ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
114113ralbidv 3174 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘 ↔ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
115109, 111, 1143anbi123d 1436 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
116115adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅)))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
117 fvexd 6857 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (0g𝑅) ∈ V)
11835, 117fsuppres 9330 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅))
119 simplr 767 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg 𝑎))
12050, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ CMnd)
12124a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉𝑥) ∈ V)
122 ssidd 3967 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑎 supp (0g𝑅)))
1234, 57, 120, 121, 103, 122, 35gsumres 19690 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) = (𝑅 Σg 𝑎))
124119, 123eqtr4d 2779 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
125 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑎 supp (0g𝑅)))
126125fvresd 6862 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) = (𝑎𝑘))
12716, 28sseqtrid 3996 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
128127sselda 3944 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑉𝑥))
129 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘 → (𝑎𝑙) = (𝑎𝑘))
130 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘𝑙 = 𝑘)
131129, 130eleq12d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 = 𝑘 → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
132131adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ 𝑙 = 𝑘) → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
133128, 132rspcdv 3573 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → (𝑎𝑘) ∈ 𝑘))
134133imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎𝑘) ∈ 𝑘)
135134an32s 650 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (𝑎𝑘) ∈ 𝑘)
136126, 135eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
137136ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
138118, 124, 1373jca 1128 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
139108, 116, 138rspcedvd 3583 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘))
140 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (.r𝑅) = (.r𝑅)
14183, 4, 57, 140, 50, 54elrspunidl 32203 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ↔ ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘)))
142139, 141mpbird 256 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
143142snssd 4769 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14483, 90rspssp 20696 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) ∧ {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14550, 98, 143, 144syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
146102, 145eqsstrrd 3983 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (Base‘𝑅) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
147100, 146eqssd 3961 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) = (Base‘𝑅))
148147fveq2d 6846 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = (𝑉‘(Base‘𝑅)))
14990, 4lidl1 20690 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (LIdeal‘𝑅))
1501, 149syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
15110, 4zarcls1 32450 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
152150, 151mpdan 685 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
1534, 152mpbiri 257 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
154153ad7antr 736 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘(Base‘𝑅)) = ∅)
155148, 154eqtrd 2776 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = ∅)
15647, 85, 1553eqtrrd 2781 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∅ = (𝑉 “ (𝑎 supp (0g𝑅))))
15739, 42, 156rspcedvd 3583 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
158157exp41 435 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) → (𝑎 finSupp (0g𝑅) → ((1r𝑅) = (𝑅 Σg 𝑎) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))))
1591583imp2 1349 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ (𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
1604, 74ringidcl 19989 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
16149, 160syl 17 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ (Base‘𝑅))
162 simplr 767 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 (Clsd‘𝐽))
163 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
1642, 3, 163, 10zartopn 32456 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) ∧ ran 𝑉 = (Clsd‘𝐽)))
165164simprd 496 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ CRing → ran 𝑉 = (Clsd‘𝐽))
16648, 165syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ran 𝑉 = (Clsd‘𝐽))
167166pweqd 4577 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝒫 ran 𝑉 = 𝒫 (Clsd‘𝐽))
168162, 167eleqtrrd 2841 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 ran 𝑉)
169168elpwid 4569 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ⊆ ran 𝑉)
170 intimafv 31624 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ (𝑉𝑥) ⊆ dom 𝑉) → (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙))
17119, 44, 170mp2an 690 . . . . . . . . . . . . . 14 (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙)
172 funimacnv 6582 . . . . . . . . . . . . . . . . 17 (Fun 𝑉 → (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉))
17319, 172ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉)
174 df-ss 3927 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ran 𝑉 ↔ (𝑥 ∩ ran 𝑉) = 𝑥)
175174biimpi 215 . . . . . . . . . . . . . . . 16 (𝑥 ⊆ ran 𝑉 → (𝑥 ∩ ran 𝑉) = 𝑥)
176173, 175eqtrid 2788 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ran 𝑉 → (𝑉 “ (𝑉𝑥)) = 𝑥)
177176inteqd 4912 . . . . . . . . . . . . . 14 (𝑥 ⊆ ran 𝑉 (𝑉 “ (𝑉𝑥)) = 𝑥)
178171, 177eqtr3id 2790 . . . . . . . . . . . . 13 (𝑥 ⊆ ran 𝑉 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
179169, 178syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
18044a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ dom 𝑉)
181180, 53sseqtrdi 3994 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (LIdeal‘𝑅))
18219a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → Fun 𝑉)
183 inteq 4910 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → 𝑥 = ∅)
184 int0 4923 . . . . . . . . . . . . . . . . . 18 ∅ = V
185183, 184eqtrdi 2792 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → 𝑥 = V)
186 vn0 4298 . . . . . . . . . . . . . . . . . 18 V ≠ ∅
187 neeq1 3006 . . . . . . . . . . . . . . . . . 18 ( 𝑥 = V → ( 𝑥 ≠ ∅ ↔ V ≠ ∅))
188186, 187mpbiri 257 . . . . . . . . . . . . . . . . 17 ( 𝑥 = V → 𝑥 ≠ ∅)
189185, 188syl 17 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → 𝑥 ≠ ∅)
190189necon2i 2978 . . . . . . . . . . . . . . 15 ( 𝑥 = ∅ → 𝑥 ≠ ∅)
191190adantl 482 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ≠ ∅)
192 preiman0 31623 . . . . . . . . . . . . . 14 ((Fun 𝑉𝑥 ⊆ ran 𝑉𝑥 ≠ ∅) → (𝑉𝑥) ≠ ∅)
193182, 169, 191, 192syl3anc 1371 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ≠ ∅)
19410, 83zarclsiin 32452 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (LIdeal‘𝑅) ∧ (𝑉𝑥) ≠ ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
19549, 181, 193, 194syl3anc 1371 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
196 simpr 485 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 = ∅)
197179, 195, 1963eqtr3d 2784 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅)
198181sselda 3944 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ∈ (LIdeal‘𝑅))
199198, 91syl 17 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ⊆ (Base‘𝑅))
200199ralrimiva 3143 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
201 unissb 4900 . . . . . . . . . . . . . 14 ( (𝑉𝑥) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
202200, 201sylibr 233 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (Base‘𝑅))
20383, 4, 90rspcl 20692 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20449, 202, 203syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20510, 4zarcls1 32450 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅)) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
20648, 204, 205syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
207197, 206mpbid 231 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅))
208161, 207eleqtrrd 2841 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)))
20983, 4, 57, 140, 49, 181elrspunidl 32203 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)) ↔ ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)))
210208, 209mpbid 231 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙))
211159, 210r19.29a 3159 . . . . . . 7 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
212 0ex 5264 . . . . . . . 8 ∅ ∈ V
213 vex 3449 . . . . . . . 8 𝑥 ∈ V
214 elfi 9349 . . . . . . . 8 ((∅ ∈ V ∧ 𝑥 ∈ V) → (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))
215212, 213, 214mp2an 690 . . . . . . 7 (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
216211, 215sylibr 233 . . . . . 6 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∅ ∈ (fi‘𝑥))
217216ex 413 . . . . 5 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → ( 𝑥 = ∅ → ∅ ∈ (fi‘𝑥)))
218217necon3bd 2957 . . . 4 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
219218ralrimiva 3143 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
220 cmpfi 22759 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
221220biimpar 478 . . 3 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → 𝐽 ∈ Comp)
2229, 219, 221syl2an2r 683 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → 𝐽 ∈ Comp)
2238, 222pm2.61dane 3032 1 (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cuni 4865   cint 4907   ciin 4955   class class class wbr 5105  cmpt 5188  ccnv 5632  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357   supp csupp 8092  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  ficfi 9346  1c1 11052  chash 14230  Basecbs 17083  .rcmulr 17134  TopOpenctopn 17303  0gc0g 17321   Σg cgsu 17322  CMndccmn 19562  1rcur 19913  Ringcrg 19964  CRingccrg 19965  LIdealclidl 20631  RSpancrsp 20632  Topctop 22242  TopOnctopon 22259  Clsdccld 22367  Compccmp 22737  PrmIdealcprmidl 32207  Speccrspec 32443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-rpss 7660  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-oi 9446  df-r1 9700  df-rank 9701  df-dju 9837  df-card 9875  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-rnghom 20146  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lmhm 20483  df-lbs 20536  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-lpidl 20713  df-nzr 20728  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-dsmm 21138  df-frlm 21153  df-uvc 21189  df-top 22243  df-topon 22260  df-cld 22370  df-cmp 22738  df-prmidl 32208  df-mxidl 32229  df-idlsrg 32243  df-rspec 32444
This theorem is referenced by:  zarcmp  32463
  Copyright terms: Public domain W3C validator