Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcmplem Structured version   Visualization version   GIF version

Theorem zarcmplem 33917
Description: Lemma for zarcmp 33918. (Contributed by Thierry Arnoux, 2-Jul-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarcmplem.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarcmplem (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝐽,𝑗   𝑗,𝑉,𝑖
Allowed substitution hints:   𝑆(𝑖,𝑗)

Proof of Theorem zarcmplem
Dummy variables 𝑘 𝑥 𝑦 𝑎 𝑙 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 20210 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 zartop.1 . . . . 5 𝑆 = (Spec‘𝑅)
3 zartop.2 . . . . 5 𝐽 = (TopOpen‘𝑆)
4 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
52, 3, 4zar0ring 33914 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
61, 5sylan 580 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 = {∅})
7 0cmp 23337 . . 3 {∅} ∈ Comp
86, 7eqeltrdi 2843 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) = 1) → 𝐽 ∈ Comp)
92, 3zartop 33912 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ Top)
10 zarcmplem.1 . . . . . . . . . . . . . . 15 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
11 fvex 6894 . . . . . . . . . . . . . . . 16 (LIdeal‘𝑅) ∈ V
1211mptex 7220 . . . . . . . . . . . . . . 15 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) ∈ V
1310, 12eqeltri 2831 . . . . . . . . . . . . . 14 𝑉 ∈ V
14 imaexg 7914 . . . . . . . . . . . . . 14 (𝑉 ∈ V → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
1513, 14mp1i 13 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ V)
16 suppssdm 8181 . . . . . . . . . . . . . . 15 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
17 imass2 6094 . . . . . . . . . . . . . . 15 ((𝑎 supp (0g𝑅)) ⊆ dom 𝑎 → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1816, 17mp1i 13 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ (𝑉 “ dom 𝑎))
1910funmpt2 6580 . . . . . . . . . . . . . . 15 Fun 𝑉
20 ssidd 3987 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ dom 𝑎)
21 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)))
22 fvexd 6896 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (Base‘𝑅) ∈ V)
2313cnvex 7926 . . . . . . . . . . . . . . . . . . . . . 22 𝑉 ∈ V
2423imaex 7915 . . . . . . . . . . . . . . . . . . . . 21 (𝑉𝑥) ∈ V
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑉𝑥) ∈ V)
2622, 25elmapd 8859 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥)) ↔ 𝑎:(𝑉𝑥)⟶(Base‘𝑅)))
2721, 26mpbid 232 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
2827fdmd 6721 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → dom 𝑎 = (𝑉𝑥))
2928adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 = (𝑉𝑥))
3020, 29sseqtrd 4000 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → dom 𝑎 ⊆ (𝑉𝑥))
31 funimass2 6624 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ dom 𝑎 ⊆ (𝑉𝑥)) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3219, 30, 31sylancr 587 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ dom 𝑎) ⊆ 𝑥)
3318, 32sstrd 3974 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ⊆ 𝑥)
3415, 33elpwd 4586 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ 𝒫 𝑥)
35 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎 finSupp (0g𝑅))
3635fsuppimpd 9386 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ∈ Fin)
37 imafi 9330 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ∈ Fin) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3819, 36, 37sylancr 587 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ Fin)
3934, 38elind 4180 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) ∈ (𝒫 𝑥 ∩ Fin))
40 inteq 4930 . . . . . . . . . . . . 13 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))))
4140eqeq2d 2747 . . . . . . . . . . . 12 (𝑦 = (𝑉 “ (𝑎 supp (0g𝑅))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4241adantl 481 . . . . . . . . . . 11 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑦 = (𝑉 “ (𝑎 supp (0g𝑅)))) → (∅ = 𝑦 ↔ ∅ = (𝑉 “ (𝑎 supp (0g𝑅)))))
4316, 29sseqtrid 4006 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
44 cnvimass 6074 . . . . . . . . . . . . . 14 (𝑉𝑥) ⊆ dom 𝑉
4543, 44sstrdi 3976 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ dom 𝑉)
46 intimafv 32693 . . . . . . . . . . . . 13 ((Fun 𝑉 ∧ (𝑎 supp (0g𝑅)) ⊆ dom 𝑉) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
4719, 45, 46sylancr 587 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉 “ (𝑎 supp (0g𝑅))) = 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙))
48 simplll 774 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ CRing)
4948crngringd 20211 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑅 ∈ Ring)
5049ad4antr 732 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ Ring)
51 fvex 6894 . . . . . . . . . . . . . . . 16 (PrmIdeal‘𝑅) ∈ V
5251rabex 5314 . . . . . . . . . . . . . . 15 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
5352, 10dmmpti 6687 . . . . . . . . . . . . . 14 dom 𝑉 = (LIdeal‘𝑅)
5445, 53sseqtrdi 4004 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅))
55 simp-7r 789 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (♯‘(Base‘𝑅)) ≠ 1)
56 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (1r𝑅) = (𝑅 Σg 𝑎))
57 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (0g𝑅) = (0g𝑅)
58 ringcmn 20247 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
591, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
6059ad8antr 740 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑅 ∈ CMnd)
6124a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑉𝑥) ∈ V)
6227ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
63 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) = ∅)
64 ssidd 3987 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → ∅ ⊆ ∅)
6563, 64eqsstrd 3998 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑎 supp (0g𝑅)) ⊆ ∅)
6635adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → 𝑎 finSupp (0g𝑅))
674, 57, 60, 61, 62, 65, 66gsumres 19899 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg 𝑎))
68 res0 5975 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ↾ ∅) = ∅
6968oveq2i 7421 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg (𝑎 ↾ ∅)) = (𝑅 Σg ∅)
7057gsum0 18667 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
7169, 70eqtri 2759 . . . . . . . . . . . . . . . . . . 19 (𝑅 Σg (𝑎 ↾ ∅)) = (0g𝑅)
7267, 71eqtr3di 2786 . . . . . . . . . . . . . . . . . 18 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (𝑅 Σg 𝑎) = (0g𝑅))
7356, 72eqtr2d 2772 . . . . . . . . . . . . . . . . 17 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (0g𝑅) = (1r𝑅))
74 eqid 2736 . . . . . . . . . . . . . . . . . 18 (1r𝑅) = (1r𝑅)
754, 57, 7401eq0ring 20495 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
7650, 73, 75syl2an2r 685 . . . . . . . . . . . . . . . 16 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (Base‘𝑅) = {(0g𝑅)})
7776fveq2d 6885 . . . . . . . . . . . . . . 15 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = (♯‘{(0g𝑅)}))
78 fvex 6894 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
79 hashsng 14392 . . . . . . . . . . . . . . . 16 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . . . 15 (♯‘{(0g𝑅)}) = 1
8177, 80eqtrdi 2787 . . . . . . . . . . . . . 14 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ (𝑎 supp (0g𝑅)) = ∅) → (♯‘(Base‘𝑅)) = 1)
8255, 81mteqand 3024 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ≠ ∅)
83 eqid 2736 . . . . . . . . . . . . . 14 (RSpan‘𝑅) = (RSpan‘𝑅)
8410, 83zarclsiin 33907 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (LIdeal‘𝑅) ∧ (𝑎 supp (0g𝑅)) ≠ ∅) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
8550, 54, 82, 84syl3anc 1373 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑙 ∈ (𝑎 supp (0g𝑅))(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))))
86 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑙((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎))
87 nfra1 3270 . . . . . . . . . . . . . . . . . . . 20 𝑙𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙
8886, 87nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑙(((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)
8954sselda 3963 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ∈ (LIdeal‘𝑅))
90 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (LIdeal‘𝑅) = (LIdeal‘𝑅)
914, 90lidlss 21178 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (LIdeal‘𝑅) → 𝑙 ⊆ (Base‘𝑅))
9289, 91syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑙 ∈ (𝑎 supp (0g𝑅))) → 𝑙 ⊆ (Base‘𝑅))
9392ex 412 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑙 ∈ (𝑎 supp (0g𝑅)) → 𝑙 ⊆ (Base‘𝑅)))
9488, 93ralrimi 3244 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
95 unissb 4920 . . . . . . . . . . . . . . . . . 18 ( (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑎 supp (0g𝑅))𝑙 ⊆ (Base‘𝑅))
9694, 95sylibr 234 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅))
9783, 4, 90rspcl 21201 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ (𝑎 supp (0g𝑅)) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
9850, 96, 97syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅))
994, 90lidlss 21178 . . . . . . . . . . . . . . . 16 (((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10098, 99syl 17 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ⊆ (Base‘𝑅))
10183, 4, 74rsp1 21203 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10250, 101syl 17 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) = (Base‘𝑅))
10327adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑎:(𝑉𝑥)⟶(Base‘𝑅))
104103, 43fssresd 6750 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
105 fvex 6894 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑅) ∈ V
106 ovex 7443 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 supp (0g𝑅)) ∈ V
107105, 106elmap 8890 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))):(𝑎 supp (0g𝑅))⟶(Base‘𝑅))
108104, 107sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅))))
109 breq1 5127 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏 finSupp (0g𝑅) ↔ (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅)))
110 oveq2 7418 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑅 Σg 𝑏) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
111110eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((1r𝑅) = (𝑅 Σg 𝑏) ↔ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅))))))
112 fveq1 6880 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (𝑏𝑘) = ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘))
113112eleq1d 2820 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏𝑘) ∈ 𝑘 ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
114113ralbidv 3164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → (∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘 ↔ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
115109, 111, 1143anbi123d 1438 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
116115adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑏 = (𝑎 ↾ (𝑎 supp (0g𝑅)))) → ((𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘) ↔ ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)))
117 fvexd 6896 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (0g𝑅) ∈ V)
11835, 117fsuppres 9410 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅))
119 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg 𝑎))
12050, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → 𝑅 ∈ CMnd)
12124a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉𝑥) ∈ V)
122 ssidd 3987 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎 supp (0g𝑅)) ⊆ (𝑎 supp (0g𝑅)))
1234, 57, 120, 121, 103, 122, 35gsumres 19899 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) = (𝑅 Σg 𝑎))
124119, 123eqtr4d 2774 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))))
125 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑎 supp (0g𝑅)))
126125fvresd 6901 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) = (𝑎𝑘))
12716, 28sseqtrid 4006 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) → (𝑎 supp (0g𝑅)) ⊆ (𝑉𝑥))
128127sselda 3963 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → 𝑘 ∈ (𝑉𝑥))
129 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘 → (𝑎𝑙) = (𝑎𝑘))
130 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 = 𝑘𝑙 = 𝑘)
131129, 130eleq12d 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 = 𝑘 → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
132131adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ 𝑙 = 𝑘) → ((𝑎𝑙) ∈ 𝑙 ↔ (𝑎𝑘) ∈ 𝑘))
133128, 132rspcdv 3598 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → (𝑎𝑘) ∈ 𝑘))
134133imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑎𝑘) ∈ 𝑘)
135134an32s 652 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → (𝑎𝑘) ∈ 𝑘)
136126, 135eqeltrd 2835 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) ∧ 𝑘 ∈ (𝑎 supp (0g𝑅))) → ((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
137136ralrimiva 3133 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘)
138118, 124, 1373jca 1128 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((𝑎 ↾ (𝑎 supp (0g𝑅))) finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg (𝑎 ↾ (𝑎 supp (0g𝑅)))) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))((𝑎 ↾ (𝑎 supp (0g𝑅)))‘𝑘) ∈ 𝑘))
139108, 116, 138rspcedvd 3608 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘))
140 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (.r𝑅) = (.r𝑅)
14183, 4, 57, 140, 50, 54elrspunidl 33448 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ↔ ∃𝑏 ∈ ((Base‘𝑅) ↑m (𝑎 supp (0g𝑅)))(𝑏 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑏) ∧ ∀𝑘 ∈ (𝑎 supp (0g𝑅))(𝑏𝑘) ∈ 𝑘)))
142139, 141mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
143142snssd 4790 . . . . . . . . . . . . . . . . 17 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14483, 90rspssp 21205 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) ∈ (LIdeal‘𝑅) ∧ {(1r𝑅)} ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
14550, 98, 143, 144syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘{(1r𝑅)}) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
146102, 145eqsstrrd 3999 . . . . . . . . . . . . . . 15 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (Base‘𝑅) ⊆ ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))))
147100, 146eqssd 3981 . . . . . . . . . . . . . 14 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅))) = (Base‘𝑅))
148147fveq2d 6885 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = (𝑉‘(Base‘𝑅)))
14990, 4lidl1 21199 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (LIdeal‘𝑅))
1501, 149syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (Base‘𝑅) ∈ (LIdeal‘𝑅))
15110, 4zarcls1 33905 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (LIdeal‘𝑅)) → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
152150, 151mpdan 687 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → ((𝑉‘(Base‘𝑅)) = ∅ ↔ (Base‘𝑅) = (Base‘𝑅)))
1534, 152mpbiri 258 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑉‘(Base‘𝑅)) = ∅)
154153ad7antr 738 . . . . . . . . . . . . 13 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘(Base‘𝑅)) = ∅)
155148, 154eqtrd 2771 . . . . . . . . . . . 12 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → (𝑉‘((RSpan‘𝑅)‘ (𝑎 supp (0g𝑅)))) = ∅)
15647, 85, 1553eqtrrd 2776 . . . . . . . . . . 11 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∅ = (𝑉 “ (𝑎 supp (0g𝑅))))
15739, 42, 156rspcedvd 3608 . . . . . . . . . 10 ((((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ 𝑎 finSupp (0g𝑅)) ∧ (1r𝑅) = (𝑅 Σg 𝑎)) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
158157exp41 434 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) → (𝑎 finSupp (0g𝑅) → ((1r𝑅) = (𝑅 Σg 𝑎) → (∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙 → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))))
1591583imp2 1350 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))) ∧ (𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
1604, 74ringidcl 20230 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
16149, 160syl 17 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ (Base‘𝑅))
162 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 (Clsd‘𝐽))
163 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
1642, 3, 163, 10zartopn 33911 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) ∧ ran 𝑉 = (Clsd‘𝐽)))
165164simprd 495 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ CRing → ran 𝑉 = (Clsd‘𝐽))
16648, 165syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ran 𝑉 = (Clsd‘𝐽))
167166pweqd 4597 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝒫 ran 𝑉 = 𝒫 (Clsd‘𝐽))
168162, 167eleqtrrd 2838 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ∈ 𝒫 ran 𝑉)
169168elpwid 4589 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ⊆ ran 𝑉)
170 intimafv 32693 . . . . . . . . . . . . . . 15 ((Fun 𝑉 ∧ (𝑉𝑥) ⊆ dom 𝑉) → (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙))
17119, 44, 170mp2an 692 . . . . . . . . . . . . . 14 (𝑉 “ (𝑉𝑥)) = 𝑙 ∈ (𝑉𝑥)(𝑉𝑙)
172 funimacnv 6622 . . . . . . . . . . . . . . . . 17 (Fun 𝑉 → (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉))
17319, 172ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑉 “ (𝑉𝑥)) = (𝑥 ∩ ran 𝑉)
174 dfss2 3949 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ran 𝑉 ↔ (𝑥 ∩ ran 𝑉) = 𝑥)
175174biimpi 216 . . . . . . . . . . . . . . . 16 (𝑥 ⊆ ran 𝑉 → (𝑥 ∩ ran 𝑉) = 𝑥)
176173, 175eqtrid 2783 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ran 𝑉 → (𝑉 “ (𝑉𝑥)) = 𝑥)
177176inteqd 4932 . . . . . . . . . . . . . 14 (𝑥 ⊆ ran 𝑉 (𝑉 “ (𝑉𝑥)) = 𝑥)
178171, 177eqtr3id 2785 . . . . . . . . . . . . 13 (𝑥 ⊆ ran 𝑉 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
179169, 178syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = 𝑥)
18044a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ dom 𝑉)
181180, 53sseqtrdi 4004 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (LIdeal‘𝑅))
18219a1i 11 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → Fun 𝑉)
183 inteq 4930 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → 𝑥 = ∅)
184 int0 4943 . . . . . . . . . . . . . . . . . 18 ∅ = V
185183, 184eqtrdi 2787 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → 𝑥 = V)
186 vn0 4325 . . . . . . . . . . . . . . . . . 18 V ≠ ∅
187 neeq1 2995 . . . . . . . . . . . . . . . . . 18 ( 𝑥 = V → ( 𝑥 ≠ ∅ ↔ V ≠ ∅))
188186, 187mpbiri 258 . . . . . . . . . . . . . . . . 17 ( 𝑥 = V → 𝑥 ≠ ∅)
189185, 188syl 17 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → 𝑥 ≠ ∅)
190189necon2i 2967 . . . . . . . . . . . . . . 15 ( 𝑥 = ∅ → 𝑥 ≠ ∅)
191190adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 ≠ ∅)
192 preiman0 32692 . . . . . . . . . . . . . 14 ((Fun 𝑉𝑥 ⊆ ran 𝑉𝑥 ≠ ∅) → (𝑉𝑥) ≠ ∅)
193182, 169, 191, 192syl3anc 1373 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ≠ ∅)
19410, 83zarclsiin 33907 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (LIdeal‘𝑅) ∧ (𝑉𝑥) ≠ ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
19549, 181, 193, 194syl3anc 1373 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑙 ∈ (𝑉𝑥)(𝑉𝑙) = (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))))
196 simpr 484 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → 𝑥 = ∅)
197179, 195, 1963eqtr3d 2779 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅)
198181sselda 3963 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ∈ (LIdeal‘𝑅))
199198, 91syl 17 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) ∧ 𝑙 ∈ (𝑉𝑥)) → 𝑙 ⊆ (Base‘𝑅))
200199ralrimiva 3133 . . . . . . . . . . . . . 14 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
201 unissb 4920 . . . . . . . . . . . . . 14 ( (𝑉𝑥) ⊆ (Base‘𝑅) ↔ ∀𝑙 ∈ (𝑉𝑥)𝑙 ⊆ (Base‘𝑅))
202200, 201sylibr 234 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (𝑉𝑥) ⊆ (Base‘𝑅))
20383, 4, 90rspcl 21201 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑉𝑥) ⊆ (Base‘𝑅)) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20449, 202, 203syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅))
20510, 4zarcls1 33905 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ ((RSpan‘𝑅)‘ (𝑉𝑥)) ∈ (LIdeal‘𝑅)) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
20648, 204, 205syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((𝑉‘((RSpan‘𝑅)‘ (𝑉𝑥))) = ∅ ↔ ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅)))
207197, 206mpbid 232 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((RSpan‘𝑅)‘ (𝑉𝑥)) = (Base‘𝑅))
208161, 207eleqtrrd 2838 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → (1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)))
20983, 4, 57, 140, 49, 181elrspunidl 33448 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ((1r𝑅) ∈ ((RSpan‘𝑅)‘ (𝑉𝑥)) ↔ ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙)))
210208, 209mpbid 232 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑎 ∈ ((Base‘𝑅) ↑m (𝑉𝑥))(𝑎 finSupp (0g𝑅) ∧ (1r𝑅) = (𝑅 Σg 𝑎) ∧ ∀𝑙 ∈ (𝑉𝑥)(𝑎𝑙) ∈ 𝑙))
211159, 210r19.29a 3149 . . . . . . 7 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
212 0ex 5282 . . . . . . . 8 ∅ ∈ V
213 vex 3468 . . . . . . . 8 𝑥 ∈ V
214 elfi 9430 . . . . . . . 8 ((∅ ∈ V ∧ 𝑥 ∈ V) → (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦))
215212, 213, 214mp2an 692 . . . . . . 7 (∅ ∈ (fi‘𝑥) ↔ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)∅ = 𝑦)
216211, 215sylibr 234 . . . . . 6 ((((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) ∧ 𝑥 = ∅) → ∅ ∈ (fi‘𝑥))
217216ex 412 . . . . 5 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → ( 𝑥 = ∅ → ∅ ∈ (fi‘𝑥)))
218217necon3bd 2947 . . . 4 (((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
219218ralrimiva 3133 . . 3 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅))
220 cmpfi 23351 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
221220biimpar 477 . . 3 ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)) → 𝐽 ∈ Comp)
2229, 219, 221syl2an2r 685 . 2 ((𝑅 ∈ CRing ∧ (♯‘(Base‘𝑅)) ≠ 1) → 𝐽 ∈ Comp)
2238, 222pm2.61dane 3020 1 (𝑅 ∈ CRing → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   cuni 4888   cint 4927   ciin 4973   class class class wbr 5124  cmpt 5206  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410   supp csupp 8164  m cmap 8845  Fincfn 8964   finSupp cfsupp 9378  ficfi 9427  1c1 11135  chash 14353  Basecbs 17233  .rcmulr 17277  TopOpenctopn 17440  0gc0g 17458   Σg cgsu 17459  CMndccmn 19766  1rcur 20146  Ringcrg 20198  CRingccrg 20199  LIdealclidl 21172  RSpancrsp 21173  Topctop 22836  TopOnctopon 22853  Clsdccld 22959  Compccmp 23329  PrmIdealcprmidl 33455  Speccrspec 33898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-oi 9529  df-r1 9783  df-rank 9784  df-dju 9920  df-card 9958  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-rhm 20437  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lbs 21038  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-lpidl 21288  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-dsmm 21697  df-frlm 21712  df-uvc 21748  df-top 22837  df-topon 22854  df-cld 22962  df-cmp 23330  df-prmidl 33456  df-mxidl 33480  df-idlsrg 33521  df-rspec 33899
This theorem is referenced by:  zarcmp  33918
  Copyright terms: Public domain W3C validator