Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 141 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2958 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1538 ≠ wne 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-ne 2952 |
This theorem is referenced by: necon2i 2985 intex 5207 iin0 5229 opelopabsb 5387 0ellim 6231 inf3lem3 9126 cardmin2 9461 pm54.43 9463 canthp1lem2 10113 renepnf 10727 renemnf 10728 lt0ne0d 11243 nnne0ALT 11712 nn0nepnf 12014 hashnemnf 13754 hashnn0n0nn 13802 geolim 15274 geolim2 15275 georeclim 15276 geoisumr 15282 geoisum1c 15284 ramtcl2 16402 lhop1 24713 logdmn0 25330 logcnlem3 25334 nbgrssovtx 27250 rusgrnumwwlkl1 27853 strlem1 30132 subfacp1lem1 32657 gonan0 32870 goaln0 32871 xpord2ind 33349 xpord3ind 33355 bday1s 33607 lrold 33656 rankeq1o 34044 poimirlem9 35368 poimirlem18 35377 poimirlem19 35378 poimirlem20 35379 poimirlem32 35391 pssn0 39729 ensucne0 40632 fouriersw 43261 afvvfveq 44094 |
Copyright terms: Public domain | W3C validator |