| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2936 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon2i 2963 intex 5284 iin0 5302 opelopabsb 5473 xpord2indlem 8083 ord1eln01 8417 ord2eln012 8418 1ellim 8419 2ellim 8420 0sdom1dom 9137 inf3lem3 9527 cardmin2 9899 pm54.43 9901 pr2ne 9903 canthp1lem2 10551 renepnf 11167 renemnf 11168 lt0ne0d 11689 nnne0ALT 12170 nn0nepnf 12469 hashnemnf 14253 hashnn0n0nn 14300 geolim 15779 geolim2 15780 georeclim 15781 geoisumr 15787 geoisum1c 15789 ramtcl2 16925 lhop1 25947 logdmn0 26577 logcnlem3 26581 bday1s 27776 lrold 27843 mulsval 28049 nbgrssovtx 29341 rusgrnumwwlkl1 29951 strlem1 32232 subfacp1lem1 35244 gonan0 35457 goaln0 35458 rankeq1o 36236 poimirlem9 37689 poimirlem18 37698 poimirlem19 37699 poimirlem20 37700 poimirlem32 37712 pssn0 42345 ensucne0 43646 fouriersw 46353 afvvfveq 47272 fdomne0 48974 |
| Copyright terms: Public domain | W3C validator |