| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2933 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon2i 2960 intex 5302 iin0 5320 opelopabsb 5493 xpord2indlem 8129 ord1eln01 8463 ord2eln012 8464 1ellim 8465 2ellim 8466 0sdom1dom 9192 inf3lem3 9590 cardmin2 9959 pm54.43 9961 pr2ne 9964 canthp1lem2 10613 renepnf 11229 renemnf 11230 lt0ne0d 11750 nnne0ALT 12231 nn0nepnf 12530 hashnemnf 14316 hashnn0n0nn 14363 geolim 15843 geolim2 15844 georeclim 15845 geoisumr 15851 geoisum1c 15853 ramtcl2 16989 lhop1 25926 logdmn0 26556 logcnlem3 26560 bday1s 27750 lrold 27815 mulsval 28019 nbgrssovtx 29295 rusgrnumwwlkl1 29905 strlem1 32186 subfacp1lem1 35173 gonan0 35386 goaln0 35387 rankeq1o 36166 poimirlem9 37630 poimirlem18 37639 poimirlem19 37640 poimirlem20 37641 poimirlem32 37653 pssn0 42222 ensucne0 43525 fouriersw 46236 afvvfveq 47153 fdomne0 48842 |
| Copyright terms: Public domain | W3C validator |