Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2949 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon2i 2977 intex 5256 iin0 5279 opelopabsb 5436 0ellim 6313 inf3lem3 9318 cardmin2 9688 pm54.43 9690 canthp1lem2 10340 renepnf 10954 renemnf 10955 lt0ne0d 11470 nnne0ALT 11941 nn0nepnf 12243 hashnemnf 13986 hashnn0n0nn 14034 geolim 15510 geolim2 15511 georeclim 15512 geoisumr 15518 geoisum1c 15520 ramtcl2 16640 lhop1 25083 logdmn0 25700 logcnlem3 25704 nbgrssovtx 27631 rusgrnumwwlkl1 28234 strlem1 30513 subfacp1lem1 33041 gonan0 33254 goaln0 33255 xpord2ind 33721 xpord3ind 33727 bday1s 33952 lrold 34004 rankeq1o 34400 poimirlem9 35713 poimirlem18 35722 poimirlem19 35723 poimirlem20 35724 poimirlem32 35736 pssn0 40128 ensucne0 41034 fouriersw 43662 afvvfveq 44527 fdomne0 46065 |
Copyright terms: Public domain | W3C validator |