| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2932 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon2i 2959 intex 5299 iin0 5317 opelopabsb 5490 xpord2indlem 8126 ord1eln01 8460 ord2eln012 8461 1ellim 8462 2ellim 8463 0sdom1dom 9185 inf3lem3 9583 cardmin2 9952 pm54.43 9954 pr2ne 9957 canthp1lem2 10606 renepnf 11222 renemnf 11223 lt0ne0d 11743 nnne0ALT 12224 nn0nepnf 12523 hashnemnf 14309 hashnn0n0nn 14356 geolim 15836 geolim2 15837 georeclim 15838 geoisumr 15844 geoisum1c 15846 ramtcl2 16982 lhop1 25919 logdmn0 26549 logcnlem3 26553 bday1s 27743 lrold 27808 mulsval 28012 nbgrssovtx 29288 rusgrnumwwlkl1 29898 strlem1 32179 subfacp1lem1 35166 gonan0 35379 goaln0 35380 rankeq1o 36159 poimirlem9 37623 poimirlem18 37632 poimirlem19 37633 poimirlem20 37634 poimirlem32 37646 pssn0 42215 ensucne0 43518 fouriersw 46229 afvvfveq 47149 fdomne0 48838 |
| Copyright terms: Public domain | W3C validator |