![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 137 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2978 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1653 ≠ wne 2971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 2972 |
This theorem is referenced by: necon2i 3005 intex 5012 iin0 5031 opelopabsb 5181 0ellim 6003 inf3lem3 8777 cardmin2 9110 pm54.43 9112 canthp1lem2 9763 renepnf 10376 renemnf 10377 lt0ne0d 10885 nnne0ALT 11351 nn0nepnf 11660 hashnemnf 13384 hashnn0n0nn 13430 geolim 14939 geolim2 14940 georeclim 14941 geoisumr 14947 geoisum1c 14949 ramtcl2 16048 lhop1 24118 logdmn0 24727 logcnlem3 24731 nbgrssovtx 26599 rusgrnumwwlkl1 27259 strlem1 29634 subfacp1lem1 31678 rankeq1o 32791 poimirlem9 33907 poimirlem18 33916 poimirlem19 33917 poimirlem20 33918 poimirlem32 33930 pssn0 38035 fouriersw 41191 afvvfveq 42002 |
Copyright terms: Public domain | W3C validator |