![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2945 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: necon2i 2973 intex 5350 iin0 5368 opelopabsb 5540 0ellim 6449 xpord2indlem 8171 ord1eln01 8533 ord2eln012 8534 1ellim 8535 2ellim 8536 0sdom1dom 9272 inf3lem3 9668 cardmin2 10037 pm54.43 10039 pr2ne 10042 canthp1lem2 10691 renepnf 11307 renemnf 11308 lt0ne0d 11826 nnne0ALT 12302 nn0nepnf 12605 hashnemnf 14380 hashnn0n0nn 14427 geolim 15903 geolim2 15904 georeclim 15905 geoisumr 15911 geoisum1c 15913 ramtcl2 17045 lhop1 26068 logdmn0 26697 logcnlem3 26701 bday1s 27891 lrold 27950 mulsval 28150 nbgrssovtx 29393 rusgrnumwwlkl1 29998 strlem1 32279 subfacp1lem1 35164 gonan0 35377 goaln0 35378 rankeq1o 36153 poimirlem9 37616 poimirlem18 37625 poimirlem19 37626 poimirlem20 37627 poimirlem32 37639 pssn0 42245 ensucne0 43519 fouriersw 46187 afvvfveq 47098 fdomne0 48680 |
Copyright terms: Public domain | W3C validator |