![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2947 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: necon2i 2975 intex 5337 iin0 5360 opelopabsb 5530 0ellim 6427 xpord2indlem 8135 ord1eln01 8498 ord2eln012 8499 1ellim 8500 2ellim 8501 0sdom1dom 9240 inf3lem3 9627 cardmin2 9996 pm54.43 9998 pr2ne 10001 canthp1lem2 10650 renepnf 11264 renemnf 11265 lt0ne0d 11781 nnne0ALT 12252 nn0nepnf 12554 hashnemnf 14306 hashnn0n0nn 14353 geolim 15818 geolim2 15819 georeclim 15820 geoisumr 15826 geoisum1c 15828 ramtcl2 16946 lhop1 25538 logdmn0 26155 logcnlem3 26159 bday1s 27340 lrold 27399 mulsval 27575 nbgrssovtx 28656 rusgrnumwwlkl1 29260 strlem1 31541 subfacp1lem1 34239 gonan0 34452 goaln0 34453 rankeq1o 35212 poimirlem9 36583 poimirlem18 36592 poimirlem19 36593 poimirlem20 36594 poimirlem32 36606 pssn0 41131 ensucne0 42362 fouriersw 45026 afvvfveq 45935 fdomne0 47594 |
Copyright terms: Public domain | W3C validator |