Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2951 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: necon2i 2979 intex 5262 iin0 5285 opelopabsb 5444 0ellim 6332 ord1eln01 8335 ord2eln012 8336 1ellim 8337 2ellim 8338 inf3lem3 9397 cardmin2 9766 pm54.43 9768 canthp1lem2 10418 renepnf 11032 renemnf 11033 lt0ne0d 11549 nnne0ALT 12020 nn0nepnf 12322 hashnemnf 14067 hashnn0n0nn 14115 geolim 15591 geolim2 15592 georeclim 15593 geoisumr 15599 geoisum1c 15601 ramtcl2 16721 lhop1 25187 logdmn0 25804 logcnlem3 25808 nbgrssovtx 27737 rusgrnumwwlkl1 28342 strlem1 30621 subfacp1lem1 33150 gonan0 33363 goaln0 33364 xpord2ind 33803 xpord3ind 33809 bday1s 34034 lrold 34086 rankeq1o 34482 poimirlem9 35795 poimirlem18 35804 poimirlem19 35805 poimirlem20 35806 poimirlem32 35818 pssn0 40209 ensucne0 41143 fouriersw 43779 afvvfveq 44651 fdomne0 46188 |
Copyright terms: Public domain | W3C validator |