![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2946 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2940 |
This theorem is referenced by: necon2i 2974 intex 5337 iin0 5360 opelopabsb 5530 0ellim 6427 xpord2indlem 8137 ord1eln01 8500 ord2eln012 8501 1ellim 8502 2ellim 8503 0sdom1dom 9242 inf3lem3 9629 cardmin2 9998 pm54.43 10000 pr2ne 10003 canthp1lem2 10652 renepnf 11267 renemnf 11268 lt0ne0d 11784 nnne0ALT 12255 nn0nepnf 12557 hashnemnf 14309 hashnn0n0nn 14356 geolim 15821 geolim2 15822 georeclim 15823 geoisumr 15829 geoisum1c 15831 ramtcl2 16949 lhop1 25767 logdmn0 26385 logcnlem3 26389 bday1s 27570 lrold 27629 mulsval 27805 nbgrssovtx 28886 rusgrnumwwlkl1 29490 strlem1 31771 subfacp1lem1 34469 gonan0 34682 goaln0 34683 rankeq1o 35448 poimirlem9 36801 poimirlem18 36810 poimirlem19 36811 poimirlem20 36812 poimirlem32 36824 pssn0 41352 ensucne0 42583 fouriersw 45246 afvvfveq 46155 fdomne0 47604 |
Copyright terms: Public domain | W3C validator |