![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2942 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ≠ wne 2935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2936 |
This theorem is referenced by: necon2i 2970 intex 5333 iin0 5356 opelopabsb 5526 0ellim 6426 xpord2indlem 8146 ord1eln01 8510 ord2eln012 8511 1ellim 8512 2ellim 8513 0sdom1dom 9256 inf3lem3 9647 cardmin2 10016 pm54.43 10018 pr2ne 10021 canthp1lem2 10670 renepnf 11286 renemnf 11287 lt0ne0d 11803 nnne0ALT 12274 nn0nepnf 12576 hashnemnf 14329 hashnn0n0nn 14376 geolim 15842 geolim2 15843 georeclim 15844 geoisumr 15850 geoisum1c 15852 ramtcl2 16973 lhop1 25940 logdmn0 26567 logcnlem3 26571 bday1s 27757 lrold 27816 mulsval 28002 nbgrssovtx 29167 rusgrnumwwlkl1 29772 strlem1 32053 subfacp1lem1 34779 gonan0 34992 goaln0 34993 rankeq1o 35757 poimirlem9 37091 poimirlem18 37100 poimirlem19 37101 poimirlem20 37102 poimirlem32 37114 pssn0 41687 ensucne0 42931 fouriersw 45591 afvvfveq 46500 fdomne0 47874 |
Copyright terms: Public domain | W3C validator |