| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2935 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon2i 2962 intex 5282 iin0 5300 opelopabsb 5470 xpord2indlem 8077 ord1eln01 8411 ord2eln012 8412 1ellim 8413 2ellim 8414 0sdom1dom 9130 inf3lem3 9520 cardmin2 9889 pm54.43 9891 pr2ne 9893 canthp1lem2 10541 renepnf 11157 renemnf 11158 lt0ne0d 11679 nnne0ALT 12160 nn0nepnf 12459 hashnemnf 14248 hashnn0n0nn 14295 geolim 15774 geolim2 15775 georeclim 15776 geoisumr 15782 geoisum1c 15784 ramtcl2 16920 lhop1 25944 logdmn0 26574 logcnlem3 26578 bday1s 27773 lrold 27840 mulsval 28046 nbgrssovtx 29337 rusgrnumwwlkl1 29944 strlem1 32225 subfacp1lem1 35211 gonan0 35424 goaln0 35425 rankeq1o 36204 poimirlem9 37668 poimirlem18 37677 poimirlem19 37678 poimirlem20 37679 poimirlem32 37691 pssn0 42259 ensucne0 43561 fouriersw 46268 afvvfveq 47178 fdomne0 48880 |
| Copyright terms: Public domain | W3C validator |