| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2939 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: necon2i 2966 intex 5314 iin0 5332 opelopabsb 5505 0ellim 6416 xpord2indlem 8146 ord1eln01 8508 ord2eln012 8509 1ellim 8510 2ellim 8511 0sdom1dom 9246 inf3lem3 9644 cardmin2 10013 pm54.43 10015 pr2ne 10018 canthp1lem2 10667 renepnf 11283 renemnf 11284 lt0ne0d 11802 nnne0ALT 12278 nn0nepnf 12582 hashnemnf 14362 hashnn0n0nn 14409 geolim 15886 geolim2 15887 georeclim 15888 geoisumr 15894 geoisum1c 15896 ramtcl2 17031 lhop1 25971 logdmn0 26601 logcnlem3 26605 bday1s 27795 lrold 27860 mulsval 28064 nbgrssovtx 29340 rusgrnumwwlkl1 29950 strlem1 32231 subfacp1lem1 35201 gonan0 35414 goaln0 35415 rankeq1o 36189 poimirlem9 37653 poimirlem18 37662 poimirlem19 37663 poimirlem20 37664 poimirlem32 37676 pssn0 42278 ensucne0 43553 fouriersw 46260 afvvfveq 47177 fdomne0 48828 |
| Copyright terms: Public domain | W3C validator |