![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
Ref | Expression |
---|---|
necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2953 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon2i 2981 intex 5362 iin0 5380 opelopabsb 5549 0ellim 6458 xpord2indlem 8188 ord1eln01 8552 ord2eln012 8553 1ellim 8554 2ellim 8555 0sdom1dom 9301 inf3lem3 9699 cardmin2 10068 pm54.43 10070 pr2ne 10073 canthp1lem2 10722 renepnf 11338 renemnf 11339 lt0ne0d 11855 nnne0ALT 12331 nn0nepnf 12633 hashnemnf 14393 hashnn0n0nn 14440 geolim 15918 geolim2 15919 georeclim 15920 geoisumr 15926 geoisum1c 15928 ramtcl2 17058 lhop1 26073 logdmn0 26700 logcnlem3 26704 bday1s 27894 lrold 27953 mulsval 28153 nbgrssovtx 29396 rusgrnumwwlkl1 30001 strlem1 32282 subfacp1lem1 35147 gonan0 35360 goaln0 35361 rankeq1o 36135 poimirlem9 37589 poimirlem18 37598 poimirlem19 37599 poimirlem20 37600 poimirlem32 37612 pssn0 42220 ensucne0 43491 fouriersw 46152 afvvfveq 47063 fdomne0 48563 |
Copyright terms: Public domain | W3C validator |