MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2ai Structured version   Visualization version   GIF version

Theorem necon2ai 2972
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon2ai.1 (𝐴 = 𝐵 → ¬ 𝜑)
Assertion
Ref Expression
necon2ai (𝜑𝐴𝐵)

Proof of Theorem necon2ai
StepHypRef Expression
1 necon2ai.1 . . 3 (𝐴 = 𝐵 → ¬ 𝜑)
21con2i 139 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
32neqned 2949 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2943
This theorem is referenced by:  necon2i  2977  intex  5256  iin0  5279  opelopabsb  5436  0ellim  6313  inf3lem3  9318  cardmin2  9688  pm54.43  9690  canthp1lem2  10340  renepnf  10954  renemnf  10955  lt0ne0d  11470  nnne0ALT  11941  nn0nepnf  12243  hashnemnf  13986  hashnn0n0nn  14034  geolim  15510  geolim2  15511  georeclim  15512  geoisumr  15518  geoisum1c  15520  ramtcl2  16640  lhop1  25083  logdmn0  25700  logcnlem3  25704  nbgrssovtx  27631  rusgrnumwwlkl1  28234  strlem1  30513  subfacp1lem1  33041  gonan0  33254  goaln0  33255  xpord2ind  33721  xpord3ind  33727  bday1s  33952  lrold  34004  rankeq1o  34400  poimirlem9  35713  poimirlem18  35722  poimirlem19  35723  poimirlem20  35724  poimirlem32  35736  pssn0  40128  ensucne0  41034  fouriersw  43662  afvvfveq  44527  fdomne0  46065
  Copyright terms: Public domain W3C validator