| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2ai | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2ai.1 | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| necon2ai | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ai.1 | . . 3 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2932 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon2i 2959 intex 5286 iin0 5304 opelopabsb 5477 xpord2indlem 8087 ord1eln01 8421 ord2eln012 8422 1ellim 8423 2ellim 8424 0sdom1dom 9145 inf3lem3 9545 cardmin2 9914 pm54.43 9916 pr2ne 9918 canthp1lem2 10566 renepnf 11182 renemnf 11183 lt0ne0d 11703 nnne0ALT 12184 nn0nepnf 12483 hashnemnf 14269 hashnn0n0nn 14316 geolim 15795 geolim2 15796 georeclim 15797 geoisumr 15803 geoisum1c 15805 ramtcl2 16941 lhop1 25935 logdmn0 26565 logcnlem3 26569 bday1s 27763 lrold 27829 mulsval 28035 nbgrssovtx 29324 rusgrnumwwlkl1 29931 strlem1 32212 subfacp1lem1 35151 gonan0 35364 goaln0 35365 rankeq1o 36144 poimirlem9 37608 poimirlem18 37617 poimirlem19 37618 poimirlem20 37619 poimirlem32 37631 pssn0 42200 ensucne0 43502 fouriersw 46213 afvvfveq 47133 fdomne0 48835 |
| Copyright terms: Public domain | W3C validator |