| Step | Hyp | Ref
| Expression |
| 1 | | elpwi 4587 |
. . . 4
⊢ (𝑦 ∈ 𝒫 𝐽 → 𝑦 ⊆ 𝐽) |
| 2 | | 0ss 4380 |
. . . . . . . . . . 11
⊢ ∅
⊆ 𝑦 |
| 3 | | 0fi 9061 |
. . . . . . . . . . 11
⊢ ∅
∈ Fin |
| 4 | | elfpw 9371 |
. . . . . . . . . . 11
⊢ (∅
∈ (𝒫 𝑦 ∩
Fin) ↔ (∅ ⊆ 𝑦 ∧ ∅ ∈ Fin)) |
| 5 | 2, 3, 4 | mpbir2an 711 |
. . . . . . . . . 10
⊢ ∅
∈ (𝒫 𝑦 ∩
Fin) |
| 6 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∪ 𝐽 = ∪ 𝑦) |
| 7 | | simprl 770 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ 𝑦 =
∅) |
| 8 | 7 | unieqd 4901 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∪ 𝑦 = ∪
∅) |
| 9 | 6, 8 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∪ 𝐽 = ∪
∅) |
| 10 | | unieq 4899 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → ∪ 𝑧 =
∪ ∅) |
| 11 | 10 | rspceeqv 3629 |
. . . . . . . . . 10
⊢ ((∅
∈ (𝒫 𝑦 ∩
Fin) ∧ ∪ 𝐽 = ∪ ∅)
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) |
| 12 | 5, 9, 11 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) |
| 13 | 12 | expr 456 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧)) |
| 14 | | vn0 4325 |
. . . . . . . . . 10
⊢ V ≠
∅ |
| 15 | | iineq1 4990 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ 𝑟 ∈ ∅ (∪ 𝐽
∖ 𝑟)) |
| 16 | 15 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ 𝑟 ∈ ∅ (∪ 𝐽
∖ 𝑟)) |
| 17 | | 0iin 5045 |
. . . . . . . . . . . . 13
⊢ ∩ 𝑟 ∈ ∅ (∪
𝐽 ∖ 𝑟) = V |
| 18 | 16, 17 | eqtrdi 2787 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = V) |
| 19 | 18 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ V =
∅)) |
| 20 | 19 | necon3bbid 2970 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (¬ ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ V ≠
∅)) |
| 21 | 14, 20 | mpbiri 258 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ¬ ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅) |
| 22 | 21 | pm2.21d 121 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)))) |
| 23 | 13, 22 | 2thd 265 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ((∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
| 24 | | uniss 4896 |
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ 𝐽 → ∪ 𝑦 ⊆ ∪ 𝐽) |
| 25 | 24 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ∪ 𝑦
⊆ ∪ 𝐽) |
| 26 | | eqss 3979 |
. . . . . . . . . . . 12
⊢ (∪ 𝑦 =
∪ 𝐽 ↔ (∪ 𝑦 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ ∪ 𝑦)) |
| 27 | 26 | baib 535 |
. . . . . . . . . . 11
⊢ (∪ 𝑦
⊆ ∪ 𝐽 → (∪ 𝑦 = ∪
𝐽 ↔ ∪ 𝐽
⊆ ∪ 𝑦)) |
| 28 | 25, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝑦 =
∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑦)) |
| 29 | | eqcom 2743 |
. . . . . . . . . 10
⊢ (∪ 𝑦 =
∪ 𝐽 ↔ ∪ 𝐽 = ∪
𝑦) |
| 30 | | ssdif0 4346 |
. . . . . . . . . 10
⊢ (∪ 𝐽
⊆ ∪ 𝑦 ↔ (∪ 𝐽 ∖ ∪ 𝑦) =
∅) |
| 31 | 28, 29, 30 | 3bitr3g 313 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝐽 =
∪ 𝑦 ↔ (∪ 𝐽 ∖ ∪ 𝑦) =
∅)) |
| 32 | | iindif2 5058 |
. . . . . . . . . . . 12
⊢ (𝑦 ≠ ∅ → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟)) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟)) |
| 34 | | uniiun 5039 |
. . . . . . . . . . . 12
⊢ ∪ 𝑦 =
∪ 𝑟 ∈ 𝑦 𝑟 |
| 35 | 34 | difeq2i 4103 |
. . . . . . . . . . 11
⊢ (∪ 𝐽
∖ ∪ 𝑦) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟) |
| 36 | 33, 35 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑦)) |
| 37 | 36 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ (∪ 𝐽
∖ ∪ 𝑦) = ∅)) |
| 38 | 31, 37 | bitr4d 282 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝐽 =
∪ 𝑦 ↔ ∩
𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅)) |
| 39 | | imassrn 6063 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ⊆ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) |
| 40 | | df-ima 5672 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) |
| 41 | | resmpt 6029 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ 𝐽 → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) = (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 42 | 41 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) = (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 43 | 42 | rneqd 5923 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ran ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 44 | 40, 43 | eqtrid 2783 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 46 | 39, 45 | sseqtrrid 4007 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
| 47 | | funmpt 6579 |
. . . . . . . . . . . 12
⊢ Fun
(𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) |
| 48 | | elinel2 4182 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝒫 𝑦 ∩ Fin) → 𝑧 ∈ Fin) |
| 49 | 48 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → 𝑧 ∈ Fin) |
| 50 | | imafi 9330 |
. . . . . . . . . . . 12
⊢ ((Fun
(𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) ∧ 𝑧 ∈ Fin) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ Fin) |
| 51 | 47, 49, 50 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ Fin) |
| 52 | | elfpw 9371 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin) ↔ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∧ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ Fin)) |
| 53 | 46, 51, 52 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) |
| 54 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 55 | 54 | topopn 22849 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ 𝐽) |
| 56 | 55 | difexd 5306 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top → (∪ 𝐽
∖ 𝑟) ∈
V) |
| 57 | 56 | ralrimivw 3137 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → ∀𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) ∈ V) |
| 58 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) = (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) |
| 59 | 58 | fnmpt 6683 |
. . . . . . . . . . . . . 14
⊢
(∀𝑟 ∈
𝑦 (∪ 𝐽
∖ 𝑟) ∈ V →
(𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) Fn 𝑦) |
| 60 | 57, 59 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top → (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) Fn 𝑦) |
| 61 | 60 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) Fn 𝑦) |
| 62 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) |
| 63 | | elfpw 9371 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin) ↔ (𝑤 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∧ 𝑤 ∈ Fin)) |
| 64 | 62, 63 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → (𝑤 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∧ 𝑤 ∈ Fin)) |
| 65 | 64 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
| 66 | 44 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 67 | 65, 66 | sseqtrd 4000 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ⊆ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 68 | 64 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ∈ Fin) |
| 69 | | fipreima 9375 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) Fn 𝑦 ∧ 𝑤 ⊆ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) ∧ 𝑤 ∈ Fin) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = 𝑤) |
| 70 | 61, 67, 68, 69 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = 𝑤) |
| 71 | | eqcom 2743 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = 𝑤 ↔ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
| 72 | 71 | rexbii 3084 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
| 73 | 70, 72 | sylib 218 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
| 74 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) → 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
| 75 | 74 | inteqd 4932 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) → ∩ 𝑤 = ∩
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧)) |
| 76 | 75 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) → (∅ = ∩ 𝑤
↔ ∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) |
| 77 | 53, 73, 76 | rexxfrd 5384 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)∅ = ∩ 𝑤
↔ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) |
| 78 | | 0ex 5282 |
. . . . . . . . . 10
⊢ ∅
∈ V |
| 79 | | imassrn 6063 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ⊆ ran (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) |
| 80 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) |
| 81 | 54, 80 | opncldf1 23027 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡(𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (𝑣 ∈ (Clsd‘𝐽) ↦ (∪
𝐽 ∖ 𝑣)))) |
| 82 | 81 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top → (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–1-1-onto→(Clsd‘𝐽)) |
| 83 | | f1ofo 6830 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–1-1-onto→(Clsd‘𝐽) → (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽)) |
| 84 | 82, 83 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽)) |
| 85 | | forn 6798 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽) → ran (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (Clsd‘𝐽)) |
| 86 | 84, 85 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top → ran (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (Clsd‘𝐽)) |
| 87 | 79, 86 | sseqtrid 4006 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ⊆ (Clsd‘𝐽)) |
| 88 | | fvex 6894 |
. . . . . . . . . . . . 13
⊢
(Clsd‘𝐽)
∈ V |
| 89 | 88 | elpw2 5309 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽) ↔ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ⊆ (Clsd‘𝐽)) |
| 90 | 87, 89 | sylibr 234 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) |
| 91 | 90 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) |
| 92 | | elfi 9430 |
. . . . . . . . . 10
⊢ ((∅
∈ V ∧ ((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ∈ 𝒫
(Clsd‘𝐽)) →
(∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) ↔ ∃𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)∅ = ∩ 𝑤)) |
| 93 | 78, 91, 92 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) ↔ ∃𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)∅ = ∩ 𝑤)) |
| 94 | | inundif 4459 |
. . . . . . . . . . . . . 14
⊢
(((𝒫 𝑦 ∩
Fin) ∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) = (𝒫
𝑦 ∩
Fin) |
| 95 | 94 | rexeqi 3308 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
(((𝒫 𝑦 ∩ Fin)
∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅}))∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) |
| 96 | | rexun 4176 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
(((𝒫 𝑦 ∩ Fin)
∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅}))∪ 𝐽 =
∪ 𝑧 ↔ (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})∪ 𝐽 =
∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
| 97 | 95, 96 | bitr3i 277 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧 ↔ (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
| 98 | | elinel2 4182 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ 𝑧 ∈
{∅}) |
| 99 | | elsni 4623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ {∅} → 𝑧 = ∅) |
| 100 | 98, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ 𝑧 =
∅) |
| 101 | 100 | unieqd 4901 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ ∪ 𝑧 = ∪
∅) |
| 102 | | uni0 4916 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ ∅ = ∅ |
| 103 | 101, 102 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ ∪ 𝑧 = ∅) |
| 104 | 103 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ (∪ 𝐽 = ∪ 𝑧 ↔ ∪ 𝐽 =
∅)) |
| 105 | 104 | biimpd 229 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ (∪ 𝐽 = ∪ 𝑧 → ∪ 𝐽 =
∅)) |
| 106 | 105 | rexlimiv 3135 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧 ∈
((𝒫 𝑦 ∩ Fin)
∩ {∅})∪ 𝐽 = ∪ 𝑧 → ∪ 𝐽 =
∅) |
| 107 | | ssidd 3987 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ⊆
𝑦) |
| 108 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝐽 = ∅) |
| 109 | | 0ss 4380 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ∅
⊆ ∪ 𝑦 |
| 110 | 108, 109 | eqsstrdi 4008 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝐽 ⊆ ∪ 𝑦) |
| 111 | 24 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝑦 ⊆ ∪ 𝐽) |
| 112 | 110, 111 | eqssd 3981 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝐽 = ∪ 𝑦) |
| 113 | 112, 108 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝑦 = ∅) |
| 114 | 113, 3 | eqeltrdi 2843 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝑦 ∈ Fin) |
| 115 | | pwfi 9334 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ 𝑦
∈ Fin ↔ 𝒫 ∪ 𝑦 ∈ Fin) |
| 116 | 114, 115 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝒫 ∪ 𝑦 ∈ Fin) |
| 117 | | pwuni 4926 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ⊆ 𝒫 ∪ 𝑦 |
| 118 | | ssfi 9192 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((𝒫 ∪ 𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝒫 ∪ 𝑦)
→ 𝑦 ∈
Fin) |
| 119 | 116, 117,
118 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ∈
Fin) |
| 120 | | elfpw 9371 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ⊆ 𝑦 ∧ 𝑦 ∈ Fin)) |
| 121 | 107, 119,
120 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ∈
(𝒫 𝑦 ∩
Fin)) |
| 122 | | simprl 770 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ≠
∅) |
| 123 | | eldifsn 4767 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
↔ (𝑦 ∈ (𝒫
𝑦 ∩ Fin) ∧ 𝑦 ≠ ∅)) |
| 124 | 121, 122,
123 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ∈
((𝒫 𝑦 ∩ Fin)
∖ {∅})) |
| 125 | | unieq 4899 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → ∪ 𝑧 = ∪
𝑦) |
| 126 | 125 | rspceeqv 3629 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
∧ ∪ 𝐽 = ∪ 𝑦) → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧) |
| 127 | 124, 112,
126 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∃𝑧
∈ ((𝒫 𝑦 ∩
Fin) ∖ {∅})∪ 𝐽 = ∪ 𝑧) |
| 128 | 127 | expr 456 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝐽 =
∅ → ∃𝑧
∈ ((𝒫 𝑦 ∩
Fin) ∖ {∅})∪ 𝐽 = ∪ 𝑧)) |
| 129 | 106, 128 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧)) |
| 130 | | idd 24 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧 → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧)) |
| 131 | 129, 130 | jaod 859 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧) → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
| 132 | | olc 868 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
((𝒫 𝑦 ∩ Fin)
∖ {∅})∪ 𝐽 = ∪ 𝑧 → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
| 133 | 131, 132 | impbid1 225 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧) ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
| 134 | 97, 133 | bitrid 283 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
| 135 | | eldifi 4111 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
→ 𝑧 ∈ (𝒫
𝑦 ∩
Fin)) |
| 136 | 135 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) |
| 137 | | elfpw 9371 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑧 ⊆ 𝑦 ∧ 𝑧 ∈ Fin)) |
| 138 | 136, 137 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (𝑧 ⊆ 𝑦 ∧ 𝑧 ∈ Fin)) |
| 139 | 138 | simpld 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ⊆ 𝑦) |
| 140 | | simpllr 775 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑦 ⊆ 𝐽) |
| 141 | 139, 140 | sstrd 3974 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ⊆ 𝐽) |
| 142 | 141 | unissd 4898 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∪ 𝑧
⊆ ∪ 𝐽) |
| 143 | | eqss 3979 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑧 =
∪ 𝐽 ↔ (∪ 𝑧 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ ∪ 𝑧)) |
| 144 | 143 | baib 535 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑧
⊆ ∪ 𝐽 → (∪ 𝑧 = ∪
𝐽 ↔ ∪ 𝐽
⊆ ∪ 𝑧)) |
| 145 | 142, 144 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∪ 𝑧 =
∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑧)) |
| 146 | | eqcom 2743 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑧 =
∪ 𝐽 ↔ ∪ 𝐽 = ∪
𝑧) |
| 147 | | ssdif0 4346 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝐽
⊆ ∪ 𝑧 ↔ (∪ 𝐽 ∖ ∪ 𝑧) =
∅) |
| 148 | | eqcom 2743 |
. . . . . . . . . . . . . . 15
⊢ ((∪ 𝐽
∖ ∪ 𝑧) = ∅ ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧)) |
| 149 | 147, 148 | bitri 275 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝐽
⊆ ∪ 𝑧 ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧)) |
| 150 | 145, 146,
149 | 3bitr3g 313 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∪ 𝐽 =
∪ 𝑧 ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧))) |
| 151 | | df-ima 5672 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = ran ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑧) |
| 152 | 139 | resmptd 6032 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) ↾ 𝑧) = (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 153 | 152 | rneqd 5923 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ran
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) ↾ 𝑧) = ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 154 | 151, 153 | eqtrid 2783 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 155 | 154 | inteqd 4932 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = ∩
ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽
∖ 𝑟))) |
| 156 | 56 | ralrimivw 3137 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ∈ Top → ∀𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) ∈ V) |
| 157 | 156 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
∀𝑟 ∈ 𝑧 (∪
𝐽 ∖ 𝑟) ∈ V) |
| 158 | | dfiin3g 5953 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑟 ∈
𝑧 (∪ 𝐽
∖ 𝑟) ∈ V →
∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 159 | 157, 158 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 160 | | eldifsni 4771 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
→ 𝑧 ≠
∅) |
| 161 | 160 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ≠ ∅) |
| 162 | | iindif2 5058 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ≠ ∅ → ∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟)) |
| 163 | 161, 162 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟)) |
| 164 | 155, 159,
163 | 3eqtr2d 2777 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = (∪ 𝐽
∖ ∪ 𝑟 ∈ 𝑧 𝑟)) |
| 165 | | uniiun 5039 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑧 =
∪ 𝑟 ∈ 𝑧 𝑟 |
| 166 | 165 | difeq2i 4103 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝐽
∖ ∪ 𝑧) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟) |
| 167 | 164, 166 | eqtr4di 2789 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = (∪ 𝐽
∖ ∪ 𝑧)) |
| 168 | 167 | eqeq2d 2747 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
(∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧))) |
| 169 | 150, 168 | bitr4d 282 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∪ 𝐽 =
∪ 𝑧 ↔ ∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧))) |
| 170 | 169 | rexbidva 3163 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) |
| 171 | 134, 170 | bitrd 279 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧))) |
| 172 | | imaeq2 6048 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = ∅ → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ ∅)) |
| 173 | | ima0 6069 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ ∅) =
∅ |
| 174 | 172, 173 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = ∅ → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = ∅) |
| 175 | 174 | inteqd 4932 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = ∅ → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = ∩
∅) |
| 176 | | int0 4943 |
. . . . . . . . . . . . . . . . . 18
⊢ ∩ ∅ = V |
| 177 | 175, 176 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ∅ → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = V) |
| 178 | 177 | neeq1d 2992 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = ∅ → (∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) ≠ ∅ ↔ V ≠
∅)) |
| 179 | 14, 178 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ∅ → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) ≠ ∅) |
| 180 | 179 | necomd 2988 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ∅ → ∅ ≠
∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
| 181 | 180 | necon2i 2967 |
. . . . . . . . . . . . 13
⊢ (∅
= ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) → 𝑧 ≠ ∅) |
| 182 | | eldifsn 4767 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
↔ (𝑧 ∈ (𝒫
𝑦 ∩ Fin) ∧ 𝑧 ≠ ∅)) |
| 183 | 182 | rbaibr 537 |
. . . . . . . . . . . . 13
⊢ (𝑧 ≠ ∅ → (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅}))) |
| 184 | 181, 183 | syl 17 |
. . . . . . . . . . . 12
⊢ (∅
= ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) → (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅}))) |
| 185 | 184 | pm5.32ri 575 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∅ =
∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) ↔ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) ∧ ∅
= ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) |
| 186 | 185 | rexbii2 3080 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧)) |
| 187 | 171, 186 | bitr4di 289 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧))) |
| 188 | 77, 93, 187 | 3bitr4rd 312 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)))) |
| 189 | 38, 188 | imbi12d 344 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
| 190 | 23, 189 | pm2.61dane 3020 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) ↔ (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
| 191 | 57 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∀𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) ∈ V) |
| 192 | | dfiin3g 5953 |
. . . . . . . . . . 11
⊢
(∀𝑟 ∈
𝑦 (∪ 𝐽
∖ 𝑟) ∈ V →
∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 193 | 191, 192 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∩
𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 194 | 44 | inteqd 4932 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∩
((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) = ∩
ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟))) |
| 195 | 193, 194 | eqtr4d 2774 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∩
𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
| 196 | 195 | eqeq1d 2738 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) = ∅)) |
| 197 | | nne 2937 |
. . . . . . . 8
⊢ (¬
∩ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ≠ ∅ ↔ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) = ∅) |
| 198 | 196, 197 | bitr4di 289 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ ¬ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅)) |
| 199 | 198 | imbi1d 341 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))) ↔ (¬ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠ ∅ → ∅
∈ (fi‘((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
| 200 | 190, 199 | bitrd 279 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) ↔ (¬ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠ ∅ → ∅
∈ (fi‘((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
| 201 | | con1b 358 |
. . . . 5
⊢ ((¬
∩ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ≠ ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))) ↔ (¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅)) |
| 202 | 200, 201 | bitrdi 287 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) ↔ (¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
| 203 | 1, 202 | sylan2 593 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽) → ((∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ (¬ ∅
∈ (fi‘((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
| 204 | 203 | ralbidva 3162 |
. 2
⊢ (𝐽 ∈ Top →
(∀𝑦 ∈ 𝒫
𝐽(∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
| 205 | 54 | iscmp 23331 |
. . 3
⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧))) |
| 206 | 205 | baib 535 |
. 2
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔
∀𝑦 ∈ 𝒫
𝐽(∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧))) |
| 207 | 90 | adantr 480 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) |
| 208 | | simpl 482 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
𝐽 ∈
Top) |
| 209 | | funmpt 6579 |
. . . . . 6
⊢ Fun
(𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) |
| 210 | 209 | a1i 11 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) → Fun
(𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟))) |
| 211 | | elpwi 4587 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫
(Clsd‘𝐽) → 𝑥 ⊆ (Clsd‘𝐽)) |
| 212 | | foima 6800 |
. . . . . . . . 9
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽) = (Clsd‘𝐽)) |
| 213 | 84, 212 | syl 17 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽) = (Clsd‘𝐽)) |
| 214 | 213 | sseq2d 3996 |
. . . . . . 7
⊢ (𝐽 ∈ Top → (𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽) ↔ 𝑥 ⊆ (Clsd‘𝐽))) |
| 215 | 211, 214 | imbitrrid 246 |
. . . . . 6
⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝒫
(Clsd‘𝐽) → 𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽))) |
| 216 | 215 | imp 406 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽)) |
| 217 | | ssimaexg 6970 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ Fun (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ∧ 𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽)) → ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
| 218 | 208, 210,
216, 217 | syl3anc 1373 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
| 219 | | df-rex 3062 |
. . . . 5
⊢
(∃𝑦 ∈
𝒫 𝐽𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
| 220 | | velpw 4585 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽) |
| 221 | 220 | anbi1i 624 |
. . . . . 6
⊢ ((𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) ↔ (𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
| 222 | 221 | exbii 1848 |
. . . . 5
⊢
(∃𝑦(𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
| 223 | 219, 222 | bitri 275 |
. . . 4
⊢
(∃𝑦 ∈
𝒫 𝐽𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
| 224 | 218, 223 | sylibr 234 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
∃𝑦 ∈ 𝒫
𝐽𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
| 225 | | simpr 484 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
| 226 | 225 | fveq2d 6885 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (fi‘𝑥) = (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
| 227 | 226 | eleq2d 2821 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)))) |
| 228 | 227 | notbid 318 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (¬ ∅ ∈
(fi‘𝑥) ↔ ¬
∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)))) |
| 229 | 225 | inteqd 4932 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → ∩ 𝑥 = ∩
((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) |
| 230 | 229 | neeq1d 2992 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (∩ 𝑥 ≠ ∅ ↔ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅)) |
| 231 | 228, 230 | imbi12d 344 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → ((¬ ∅ ∈
(fi‘𝑥) → ∩ 𝑥
≠ ∅) ↔ (¬ ∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → ∩
((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
| 232 | 207, 224,
231 | ralxfrd 5383 |
. 2
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝒫
(Clsd‘𝐽)(¬
∅ ∈ (fi‘𝑥)
→ ∩ 𝑥 ≠ ∅) ↔ ∀𝑦 ∈ 𝒫 𝐽(¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
| 233 | 204, 206,
232 | 3bitr4d 311 |
1
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔
∀𝑥 ∈ 𝒫
(Clsd‘𝐽)(¬
∅ ∈ (fi‘𝑥)
→ ∩ 𝑥 ≠ ∅))) |