Step | Hyp | Ref
| Expression |
1 | | elpwi 4389 |
. . . 4
⊢ (𝑦 ∈ 𝒫 𝐽 → 𝑦 ⊆ 𝐽) |
2 | | 0ss 4198 |
. . . . . . . . . . 11
⊢ ∅
⊆ 𝑦 |
3 | | 0fin 8478 |
. . . . . . . . . . 11
⊢ ∅
∈ Fin |
4 | | elfpw 8558 |
. . . . . . . . . . 11
⊢ (∅
∈ (𝒫 𝑦 ∩
Fin) ↔ (∅ ⊆ 𝑦 ∧ ∅ ∈ Fin)) |
5 | 2, 3, 4 | mpbir2an 701 |
. . . . . . . . . 10
⊢ ∅
∈ (𝒫 𝑦 ∩
Fin) |
6 | | simprr 763 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∪ 𝐽 = ∪ 𝑦) |
7 | | simprl 761 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ 𝑦 =
∅) |
8 | 7 | unieqd 4683 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∪ 𝑦 = ∪
∅) |
9 | 6, 8 | eqtrd 2814 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∪ 𝐽 = ∪
∅) |
10 | | unieq 4681 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → ∪ 𝑧 =
∪ ∅) |
11 | 10 | rspceeqv 3529 |
. . . . . . . . . 10
⊢ ((∅
∈ (𝒫 𝑦 ∩
Fin) ∧ ∪ 𝐽 = ∪ ∅)
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) |
12 | 5, 9, 11 | sylancr 581 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) |
13 | 12 | expr 450 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧)) |
14 | | vn0 4153 |
. . . . . . . . . 10
⊢ V ≠
∅ |
15 | | iineq1 4770 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ 𝑟 ∈ ∅ (∪ 𝐽
∖ 𝑟)) |
16 | 15 | adantl 475 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ 𝑟 ∈ ∅ (∪ 𝐽
∖ 𝑟)) |
17 | | 0iin 4813 |
. . . . . . . . . . . . 13
⊢ ∩ 𝑟 ∈ ∅ (∪
𝐽 ∖ 𝑟) = V |
18 | 16, 17 | syl6eq 2830 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = V) |
19 | 18 | eqeq1d 2780 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ V =
∅)) |
20 | 19 | necon3bbid 3006 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (¬ ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ V ≠
∅)) |
21 | 14, 20 | mpbiri 250 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ¬ ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅) |
22 | 21 | pm2.21d 119 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)))) |
23 | 13, 22 | 2thd 257 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ((∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
24 | | uniss 4696 |
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ 𝐽 → ∪ 𝑦 ⊆ ∪ 𝐽) |
25 | 24 | ad2antlr 717 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ∪ 𝑦
⊆ ∪ 𝐽) |
26 | | eqss 3836 |
. . . . . . . . . . . 12
⊢ (∪ 𝑦 =
∪ 𝐽 ↔ (∪ 𝑦 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ ∪ 𝑦)) |
27 | 26 | baib 531 |
. . . . . . . . . . 11
⊢ (∪ 𝑦
⊆ ∪ 𝐽 → (∪ 𝑦 = ∪
𝐽 ↔ ∪ 𝐽
⊆ ∪ 𝑦)) |
28 | 25, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝑦 =
∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑦)) |
29 | | eqcom 2785 |
. . . . . . . . . 10
⊢ (∪ 𝑦 =
∪ 𝐽 ↔ ∪ 𝐽 = ∪
𝑦) |
30 | | ssdif0 4172 |
. . . . . . . . . 10
⊢ (∪ 𝐽
⊆ ∪ 𝑦 ↔ (∪ 𝐽 ∖ ∪ 𝑦) =
∅) |
31 | 28, 29, 30 | 3bitr3g 305 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝐽 =
∪ 𝑦 ↔ (∪ 𝐽 ∖ ∪ 𝑦) =
∅)) |
32 | | iindif2 4824 |
. . . . . . . . . . . 12
⊢ (𝑦 ≠ ∅ → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟)) |
33 | 32 | adantl 475 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟)) |
34 | | uniiun 4808 |
. . . . . . . . . . . 12
⊢ ∪ 𝑦 =
∪ 𝑟 ∈ 𝑦 𝑟 |
35 | 34 | difeq2i 3948 |
. . . . . . . . . . 11
⊢ (∪ 𝐽
∖ ∪ 𝑦) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟) |
36 | 33, 35 | syl6eqr 2832 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑦)) |
37 | 36 | eqeq1d 2780 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ (∪ 𝐽
∖ ∪ 𝑦) = ∅)) |
38 | 31, 37 | bitr4d 274 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝐽 =
∪ 𝑦 ↔ ∩
𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅)) |
39 | | imassrn 5733 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ⊆ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) |
40 | | df-ima 5370 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) |
41 | | resmpt 5701 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ 𝐽 → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) = (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
42 | 41 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) = (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
43 | 42 | rneqd 5600 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ran ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
44 | 40, 43 | syl5eq 2826 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
45 | 44 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
46 | 39, 45 | syl5sseqr 3873 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
47 | | funmpt 6175 |
. . . . . . . . . . . 12
⊢ Fun
(𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) |
48 | | elinel2 4023 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝒫 𝑦 ∩ Fin) → 𝑧 ∈ Fin) |
49 | 48 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → 𝑧 ∈ Fin) |
50 | | imafi 8549 |
. . . . . . . . . . . 12
⊢ ((Fun
(𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) ∧ 𝑧 ∈ Fin) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ Fin) |
51 | 47, 49, 50 | sylancr 581 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ Fin) |
52 | | elfpw 8558 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin) ↔ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∧ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ Fin)) |
53 | 46, 51, 52 | sylanbrc 578 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) |
54 | | eqid 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝐽 =
∪ 𝐽 |
55 | 54 | topopn 21122 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ 𝐽) |
56 | | difexg 5047 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝐽
∈ 𝐽 → (∪ 𝐽
∖ 𝑟) ∈
V) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top → (∪ 𝐽
∖ 𝑟) ∈
V) |
58 | 57 | ralrimivw 3149 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → ∀𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) ∈ V) |
59 | | eqid 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) = (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) |
60 | 59 | fnmpt 6268 |
. . . . . . . . . . . . . 14
⊢
(∀𝑟 ∈
𝑦 (∪ 𝐽
∖ 𝑟) ∈ V →
(𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) Fn 𝑦) |
61 | 58, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top → (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) Fn 𝑦) |
62 | 61 | ad3antrrr 720 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) Fn 𝑦) |
63 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) |
64 | | elfpw 8558 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin) ↔ (𝑤 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∧ 𝑤 ∈ Fin)) |
65 | 63, 64 | sylib 210 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → (𝑤 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∧ 𝑤 ∈ Fin)) |
66 | 65 | simpld 490 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
67 | 44 | ad2antrr 716 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
68 | 66, 67 | sseqtrd 3860 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ⊆ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
69 | 65 | simprd 491 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ∈ Fin) |
70 | | fipreima 8562 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) Fn 𝑦 ∧ 𝑤 ⊆ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) ∧ 𝑤 ∈ Fin) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = 𝑤) |
71 | 62, 68, 69, 70 | syl3anc 1439 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = 𝑤) |
72 | | eqcom 2785 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = 𝑤 ↔ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
73 | 72 | rexbii 3224 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
74 | 71, 73 | sylib 210 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
75 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) → 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
76 | 75 | inteqd 4717 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) → ∩ 𝑤 = ∩
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧)) |
77 | 76 | eqeq2d 2788 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) → (∅ = ∩ 𝑤
↔ ∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) |
78 | 53, 74, 77 | rexxfrd 5123 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)∅ = ∩ 𝑤
↔ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) |
79 | | 0ex 5028 |
. . . . . . . . . 10
⊢ ∅
∈ V |
80 | | imassrn 5733 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ⊆ ran (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) |
81 | | eqid 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) |
82 | 54, 81 | opncldf1 21300 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡(𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (𝑣 ∈ (Clsd‘𝐽) ↦ (∪
𝐽 ∖ 𝑣)))) |
83 | 82 | simpld 490 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top → (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–1-1-onto→(Clsd‘𝐽)) |
84 | | f1ofo 6400 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–1-1-onto→(Clsd‘𝐽) → (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽)) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽)) |
86 | | forn 6371 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽) → ran (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (Clsd‘𝐽)) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top → ran (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (Clsd‘𝐽)) |
88 | 80, 87 | syl5sseq 3872 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ⊆ (Clsd‘𝐽)) |
89 | | fvex 6461 |
. . . . . . . . . . . . 13
⊢
(Clsd‘𝐽)
∈ V |
90 | 89 | elpw2 5064 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽) ↔ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ⊆ (Clsd‘𝐽)) |
91 | 88, 90 | sylibr 226 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) |
92 | 91 | ad2antrr 716 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) |
93 | | elfi 8609 |
. . . . . . . . . 10
⊢ ((∅
∈ V ∧ ((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ∈ 𝒫
(Clsd‘𝐽)) →
(∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) ↔ ∃𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)∅ = ∩ 𝑤)) |
94 | 79, 92, 93 | sylancr 581 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) ↔ ∃𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)∅ = ∩ 𝑤)) |
95 | | inundif 4270 |
. . . . . . . . . . . . . 14
⊢
(((𝒫 𝑦 ∩
Fin) ∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) = (𝒫
𝑦 ∩
Fin) |
96 | 95 | rexeqi 3339 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
(((𝒫 𝑦 ∩ Fin)
∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅}))∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) |
97 | | rexun 4016 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
(((𝒫 𝑦 ∩ Fin)
∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅}))∪ 𝐽 =
∪ 𝑧 ↔ (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})∪ 𝐽 =
∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
98 | 96, 97 | bitr3i 269 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧 ↔ (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
99 | | elinel2 4023 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ 𝑧 ∈
{∅}) |
100 | | elsni 4415 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ {∅} → 𝑧 = ∅) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ 𝑧 =
∅) |
102 | 101 | unieqd 4683 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ ∪ 𝑧 = ∪
∅) |
103 | | uni0 4702 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ ∅ = ∅ |
104 | 102, 103 | syl6eq 2830 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ ∪ 𝑧 = ∅) |
105 | 104 | eqeq2d 2788 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ (∪ 𝐽 = ∪ 𝑧 ↔ ∪ 𝐽 =
∅)) |
106 | 105 | biimpd 221 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ (∪ 𝐽 = ∪ 𝑧 → ∪ 𝐽 =
∅)) |
107 | 106 | rexlimiv 3209 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧 ∈
((𝒫 𝑦 ∩ Fin)
∩ {∅})∪ 𝐽 = ∪ 𝑧 → ∪ 𝐽 =
∅) |
108 | | ssidd 3843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ⊆
𝑦) |
109 | | simprr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝐽 = ∅) |
110 | | 0ss 4198 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ∅
⊆ ∪ 𝑦 |
111 | 109, 110 | syl6eqss 3874 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝐽 ⊆ ∪ 𝑦) |
112 | 24 | ad2antlr 717 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝑦 ⊆ ∪ 𝐽) |
113 | 111, 112 | eqssd 3838 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝐽 = ∪ 𝑦) |
114 | 113, 109 | eqtr3d 2816 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝑦 = ∅) |
115 | 114, 3 | syl6eqel 2867 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝑦 ∈ Fin) |
116 | | pwfi 8551 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ 𝑦
∈ Fin ↔ 𝒫 ∪ 𝑦 ∈ Fin) |
117 | 115, 116 | sylib 210 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝒫 ∪ 𝑦 ∈ Fin) |
118 | | pwuni 4711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ⊆ 𝒫 ∪ 𝑦 |
119 | | ssfi 8470 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((𝒫 ∪ 𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝒫 ∪ 𝑦)
→ 𝑦 ∈
Fin) |
120 | 117, 118,
119 | sylancl 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ∈
Fin) |
121 | | elfpw 8558 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ⊆ 𝑦 ∧ 𝑦 ∈ Fin)) |
122 | 108, 120,
121 | sylanbrc 578 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ∈
(𝒫 𝑦 ∩
Fin)) |
123 | | simprl 761 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ≠
∅) |
124 | | eldifsn 4550 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
↔ (𝑦 ∈ (𝒫
𝑦 ∩ Fin) ∧ 𝑦 ≠ ∅)) |
125 | 122, 123,
124 | sylanbrc 578 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ∈
((𝒫 𝑦 ∩ Fin)
∖ {∅})) |
126 | | unieq 4681 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → ∪ 𝑧 = ∪
𝑦) |
127 | 126 | rspceeqv 3529 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
∧ ∪ 𝐽 = ∪ 𝑦) → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧) |
128 | 125, 113,
127 | syl2anc 579 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∃𝑧
∈ ((𝒫 𝑦 ∩
Fin) ∖ {∅})∪ 𝐽 = ∪ 𝑧) |
129 | 128 | expr 450 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝐽 =
∅ → ∃𝑧
∈ ((𝒫 𝑦 ∩
Fin) ∖ {∅})∪ 𝐽 = ∪ 𝑧)) |
130 | 107, 129 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧)) |
131 | | idd 24 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧 → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧)) |
132 | 130, 131 | jaod 848 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧) → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
133 | | olc 857 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
((𝒫 𝑦 ∩ Fin)
∖ {∅})∪ 𝐽 = ∪ 𝑧 → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
134 | 132, 133 | impbid1 217 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧) ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
135 | 98, 134 | syl5bb 275 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) |
136 | | eldifi 3955 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
→ 𝑧 ∈ (𝒫
𝑦 ∩
Fin)) |
137 | 136 | adantl 475 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) |
138 | | elfpw 8558 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑧 ⊆ 𝑦 ∧ 𝑧 ∈ Fin)) |
139 | 137, 138 | sylib 210 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (𝑧 ⊆ 𝑦 ∧ 𝑧 ∈ Fin)) |
140 | 139 | simpld 490 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ⊆ 𝑦) |
141 | | simpllr 766 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑦 ⊆ 𝐽) |
142 | 140, 141 | sstrd 3831 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ⊆ 𝐽) |
143 | 142 | unissd 4699 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∪ 𝑧
⊆ ∪ 𝐽) |
144 | | eqss 3836 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑧 =
∪ 𝐽 ↔ (∪ 𝑧 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ ∪ 𝑧)) |
145 | 144 | baib 531 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑧
⊆ ∪ 𝐽 → (∪ 𝑧 = ∪
𝐽 ↔ ∪ 𝐽
⊆ ∪ 𝑧)) |
146 | 143, 145 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∪ 𝑧 =
∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑧)) |
147 | | eqcom 2785 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑧 =
∪ 𝐽 ↔ ∪ 𝐽 = ∪
𝑧) |
148 | | ssdif0 4172 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝐽
⊆ ∪ 𝑧 ↔ (∪ 𝐽 ∖ ∪ 𝑧) =
∅) |
149 | | eqcom 2785 |
. . . . . . . . . . . . . . 15
⊢ ((∪ 𝐽
∖ ∪ 𝑧) = ∅ ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧)) |
150 | 148, 149 | bitri 267 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝐽
⊆ ∪ 𝑧 ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧)) |
151 | 146, 147,
150 | 3bitr3g 305 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∪ 𝐽 =
∪ 𝑧 ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧))) |
152 | | df-ima 5370 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = ran ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑧) |
153 | 140 | resmptd 5704 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) ↾ 𝑧) = (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
154 | 153 | rneqd 5600 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ran
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) ↾ 𝑧) = ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
155 | 152, 154 | syl5eq 2826 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
156 | 155 | inteqd 4717 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = ∩
ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽
∖ 𝑟))) |
157 | 57 | ralrimivw 3149 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ∈ Top → ∀𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) ∈ V) |
158 | 157 | ad3antrrr 720 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
∀𝑟 ∈ 𝑧 (∪
𝐽 ∖ 𝑟) ∈ V) |
159 | | dfiin3g 5627 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑟 ∈
𝑧 (∪ 𝐽
∖ 𝑟) ∈ V →
∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
160 | 158, 159 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) |
161 | | eldifsni 4553 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
→ 𝑧 ≠
∅) |
162 | 161 | adantl 475 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ≠ ∅) |
163 | | iindif2 4824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ≠ ∅ → ∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟)) |
164 | 162, 163 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟)) |
165 | 156, 160,
164 | 3eqtr2d 2820 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = (∪ 𝐽
∖ ∪ 𝑟 ∈ 𝑧 𝑟)) |
166 | | uniiun 4808 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑧 =
∪ 𝑟 ∈ 𝑧 𝑟 |
167 | 166 | difeq2i 3948 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝐽
∖ ∪ 𝑧) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟) |
168 | 165, 167 | syl6eqr 2832 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = (∪ 𝐽
∖ ∪ 𝑧)) |
169 | 168 | eqeq2d 2788 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
(∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧))) |
170 | 151, 169 | bitr4d 274 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∪ 𝐽 =
∪ 𝑧 ↔ ∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧))) |
171 | 170 | rexbidva 3234 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) |
172 | 135, 171 | bitrd 271 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧))) |
173 | | imaeq2 5718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = ∅ → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ ∅)) |
174 | | ima0 5737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ ∅) =
∅ |
175 | 173, 174 | syl6eq 2830 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = ∅ → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = ∅) |
176 | 175 | inteqd 4717 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = ∅ → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = ∩
∅) |
177 | | int0 4726 |
. . . . . . . . . . . . . . . . . 18
⊢ ∩ ∅ = V |
178 | 176, 177 | syl6eq 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ∅ → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = V) |
179 | 178 | neeq1d 3028 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = ∅ → (∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) ≠ ∅ ↔ V ≠
∅)) |
180 | 14, 179 | mpbiri 250 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ∅ → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) ≠ ∅) |
181 | 180 | necomd 3024 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ∅ → ∅ ≠
∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) |
182 | 181 | necon2i 3003 |
. . . . . . . . . . . . 13
⊢ (∅
= ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) → 𝑧 ≠ ∅) |
183 | | eldifsn 4550 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
↔ (𝑧 ∈ (𝒫
𝑦 ∩ Fin) ∧ 𝑧 ≠ ∅)) |
184 | 183 | rbaibr 533 |
. . . . . . . . . . . . 13
⊢ (𝑧 ≠ ∅ → (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅}))) |
185 | 182, 184 | syl 17 |
. . . . . . . . . . . 12
⊢ (∅
= ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) → (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅}))) |
186 | 185 | pm5.32ri 571 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∅ =
∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) ↔ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) ∧ ∅
= ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) |
187 | 186 | rexbii2 3222 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧)) |
188 | 172, 187 | syl6bbr 281 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧))) |
189 | 78, 94, 188 | 3bitr4rd 304 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)))) |
190 | 38, 189 | imbi12d 336 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
191 | 23, 190 | pm2.61dane 3057 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) ↔ (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
192 | 58 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∀𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) ∈ V) |
193 | | dfiin3g 5627 |
. . . . . . . . . . 11
⊢
(∀𝑟 ∈
𝑦 (∪ 𝐽
∖ 𝑟) ∈ V →
∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
194 | 192, 193 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∩
𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) |
195 | 44 | inteqd 4717 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∩
((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) = ∩
ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟))) |
196 | 194, 195 | eqtr4d 2817 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∩
𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
197 | 196 | eqeq1d 2780 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) = ∅)) |
198 | | nne 2973 |
. . . . . . . 8
⊢ (¬
∩ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ≠ ∅ ↔ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) = ∅) |
199 | 197, 198 | syl6bbr 281 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ ¬ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅)) |
200 | 199 | imbi1d 333 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))) ↔ (¬ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠ ∅ → ∅
∈ (fi‘((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
201 | 191, 200 | bitrd 271 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) ↔ (¬ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠ ∅ → ∅
∈ (fi‘((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) |
202 | | con1b 350 |
. . . . 5
⊢ ((¬
∩ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ≠ ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))) ↔ (¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅)) |
203 | 201, 202 | syl6bb 279 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) ↔ (¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
204 | 1, 203 | sylan2 586 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽) → ((∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ (¬ ∅
∈ (fi‘((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
205 | 204 | ralbidva 3167 |
. 2
⊢ (𝐽 ∈ Top →
(∀𝑦 ∈ 𝒫
𝐽(∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
206 | 54 | iscmp 21604 |
. . 3
⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧))) |
207 | 206 | baib 531 |
. 2
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔
∀𝑦 ∈ 𝒫
𝐽(∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧))) |
208 | 91 | adantr 474 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) |
209 | | simpl 476 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
𝐽 ∈
Top) |
210 | | funmpt 6175 |
. . . . . 6
⊢ Fun
(𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) |
211 | 210 | a1i 11 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) → Fun
(𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟))) |
212 | | elpwi 4389 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫
(Clsd‘𝐽) → 𝑥 ⊆ (Clsd‘𝐽)) |
213 | | foima 6373 |
. . . . . . . . 9
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽) = (Clsd‘𝐽)) |
214 | 85, 213 | syl 17 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽) = (Clsd‘𝐽)) |
215 | 214 | sseq2d 3852 |
. . . . . . 7
⊢ (𝐽 ∈ Top → (𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽) ↔ 𝑥 ⊆ (Clsd‘𝐽))) |
216 | 212, 215 | syl5ibr 238 |
. . . . . 6
⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝒫
(Clsd‘𝐽) → 𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽))) |
217 | 216 | imp 397 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽)) |
218 | | ssimaexg 6526 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ Fun (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ∧ 𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽)) → ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
219 | 209, 211,
217, 218 | syl3anc 1439 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
220 | | df-rex 3096 |
. . . . 5
⊢
(∃𝑦 ∈
𝒫 𝐽𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
221 | | selpw 4386 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽) |
222 | 221 | anbi1i 617 |
. . . . . 6
⊢ ((𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) ↔ (𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
223 | 222 | exbii 1892 |
. . . . 5
⊢
(∃𝑦(𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
224 | 220, 223 | bitri 267 |
. . . 4
⊢
(∃𝑦 ∈
𝒫 𝐽𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
225 | 219, 224 | sylibr 226 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
∃𝑦 ∈ 𝒫
𝐽𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
226 | | simpr 479 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) |
227 | 226 | fveq2d 6452 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (fi‘𝑥) = (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) |
228 | 227 | eleq2d 2845 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)))) |
229 | 228 | notbid 310 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (¬ ∅ ∈
(fi‘𝑥) ↔ ¬
∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)))) |
230 | 226 | inteqd 4717 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → ∩ 𝑥 = ∩
((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) |
231 | 230 | neeq1d 3028 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (∩ 𝑥 ≠ ∅ ↔ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅)) |
232 | 229, 231 | imbi12d 336 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → ((¬ ∅ ∈
(fi‘𝑥) → ∩ 𝑥
≠ ∅) ↔ (¬ ∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → ∩
((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
233 | 208, 225,
232 | ralxfrd 5122 |
. 2
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝒫
(Clsd‘𝐽)(¬
∅ ∈ (fi‘𝑥)
→ ∩ 𝑥 ≠ ∅) ↔ ∀𝑦 ∈ 𝒫 𝐽(¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) |
234 | 205, 207,
233 | 3bitr4d 303 |
1
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔
∀𝑥 ∈ 𝒫
(Clsd‘𝐽)(¬
∅ ∈ (fi‘𝑥)
→ ∩ 𝑥 ≠ ∅))) |