| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elpwi 4606 | . . . 4
⊢ (𝑦 ∈ 𝒫 𝐽 → 𝑦 ⊆ 𝐽) | 
| 2 |  | 0ss 4399 | . . . . . . . . . . 11
⊢ ∅
⊆ 𝑦 | 
| 3 |  | 0fi 9083 | . . . . . . . . . . 11
⊢ ∅
∈ Fin | 
| 4 |  | elfpw 9395 | . . . . . . . . . . 11
⊢ (∅
∈ (𝒫 𝑦 ∩
Fin) ↔ (∅ ⊆ 𝑦 ∧ ∅ ∈ Fin)) | 
| 5 | 2, 3, 4 | mpbir2an 711 | . . . . . . . . . 10
⊢ ∅
∈ (𝒫 𝑦 ∩
Fin) | 
| 6 |  | simprr 772 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∪ 𝐽 = ∪ 𝑦) | 
| 7 |  | simprl 770 | . . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ 𝑦 =
∅) | 
| 8 | 7 | unieqd 4919 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∪ 𝑦 = ∪
∅) | 
| 9 | 6, 8 | eqtrd 2776 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∪ 𝐽 = ∪
∅) | 
| 10 |  | unieq 4917 | . . . . . . . . . . 11
⊢ (𝑧 = ∅ → ∪ 𝑧 =
∪ ∅) | 
| 11 | 10 | rspceeqv 3644 | . . . . . . . . . 10
⊢ ((∅
∈ (𝒫 𝑦 ∩
Fin) ∧ ∪ 𝐽 = ∪ ∅)
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) | 
| 12 | 5, 9, 11 | sylancr 587 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 = ∅ ∧ ∪
𝐽 = ∪ 𝑦))
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) | 
| 13 | 12 | expr 456 | . . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧)) | 
| 14 |  | vn0 4344 | . . . . . . . . . 10
⊢ V ≠
∅ | 
| 15 |  | iineq1 5008 | . . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ 𝑟 ∈ ∅ (∪ 𝐽
∖ 𝑟)) | 
| 16 | 15 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ 𝑟 ∈ ∅ (∪ 𝐽
∖ 𝑟)) | 
| 17 |  | 0iin 5063 | . . . . . . . . . . . . 13
⊢ ∩ 𝑟 ∈ ∅ (∪
𝐽 ∖ 𝑟) = V | 
| 18 | 16, 17 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = V) | 
| 19 | 18 | eqeq1d 2738 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ V =
∅)) | 
| 20 | 19 | necon3bbid 2977 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (¬ ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ V ≠
∅)) | 
| 21 | 14, 20 | mpbiri 258 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ¬ ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅) | 
| 22 | 21 | pm2.21d 121 | . . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)))) | 
| 23 | 13, 22 | 2thd 265 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 = ∅) → ((∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) | 
| 24 |  | uniss 4914 | . . . . . . . . . . . 12
⊢ (𝑦 ⊆ 𝐽 → ∪ 𝑦 ⊆ ∪ 𝐽) | 
| 25 | 24 | ad2antlr 727 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ∪ 𝑦
⊆ ∪ 𝐽) | 
| 26 |  | eqss 3998 | . . . . . . . . . . . 12
⊢ (∪ 𝑦 =
∪ 𝐽 ↔ (∪ 𝑦 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ ∪ 𝑦)) | 
| 27 | 26 | baib 535 | . . . . . . . . . . 11
⊢ (∪ 𝑦
⊆ ∪ 𝐽 → (∪ 𝑦 = ∪
𝐽 ↔ ∪ 𝐽
⊆ ∪ 𝑦)) | 
| 28 | 25, 27 | syl 17 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝑦 =
∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑦)) | 
| 29 |  | eqcom 2743 | . . . . . . . . . 10
⊢ (∪ 𝑦 =
∪ 𝐽 ↔ ∪ 𝐽 = ∪
𝑦) | 
| 30 |  | ssdif0 4365 | . . . . . . . . . 10
⊢ (∪ 𝐽
⊆ ∪ 𝑦 ↔ (∪ 𝐽 ∖ ∪ 𝑦) =
∅) | 
| 31 | 28, 29, 30 | 3bitr3g 313 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝐽 =
∪ 𝑦 ↔ (∪ 𝐽 ∖ ∪ 𝑦) =
∅)) | 
| 32 |  | iindif2 5076 | . . . . . . . . . . . 12
⊢ (𝑦 ≠ ∅ → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟)) | 
| 33 | 32 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟)) | 
| 34 |  | uniiun 5057 | . . . . . . . . . . . 12
⊢ ∪ 𝑦 =
∪ 𝑟 ∈ 𝑦 𝑟 | 
| 35 | 34 | difeq2i 4122 | . . . . . . . . . . 11
⊢ (∪ 𝐽
∖ ∪ 𝑦) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟) | 
| 36 | 33, 35 | eqtr4di 2794 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑦)) | 
| 37 | 36 | eqeq1d 2738 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ (∪ 𝐽
∖ ∪ 𝑦) = ∅)) | 
| 38 | 31, 37 | bitr4d 282 | . . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝐽 =
∪ 𝑦 ↔ ∩
𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅)) | 
| 39 |  | imassrn 6088 | . . . . . . . . . . . 12
⊢ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ⊆ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) | 
| 40 |  | df-ima 5697 | . . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) | 
| 41 |  | resmpt 6054 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ 𝐽 → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) = (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 42 | 41 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) = (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 43 | 42 | rneqd 5948 | . . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ran ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 44 | 40, 43 | eqtrid 2788 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 45 | 44 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 46 | 39, 45 | sseqtrrid 4026 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) | 
| 47 |  | funmpt 6603 | . . . . . . . . . . . 12
⊢ Fun
(𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) | 
| 48 |  | elinel2 4201 | . . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝒫 𝑦 ∩ Fin) → 𝑧 ∈ Fin) | 
| 49 | 48 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → 𝑧 ∈ Fin) | 
| 50 |  | imafi 9354 | . . . . . . . . . . . 12
⊢ ((Fun
(𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) ∧ 𝑧 ∈ Fin) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ Fin) | 
| 51 | 47, 49, 50 | sylancr 587 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ Fin) | 
| 52 |  | elfpw 9395 | . . . . . . . . . . 11
⊢ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin) ↔ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∧ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ Fin)) | 
| 53 | 46, 51, 52 | sylanbrc 583 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) | 
| 54 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 55 | 54 | topopn 22913 | . . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ 𝐽) | 
| 56 | 55 | difexd 5330 | . . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top → (∪ 𝐽
∖ 𝑟) ∈
V) | 
| 57 | 56 | ralrimivw 3149 | . . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → ∀𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) ∈ V) | 
| 58 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) = (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) | 
| 59 | 58 | fnmpt 6707 | . . . . . . . . . . . . . 14
⊢
(∀𝑟 ∈
𝑦 (∪ 𝐽
∖ 𝑟) ∈ V →
(𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) Fn 𝑦) | 
| 60 | 57, 59 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top → (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) Fn 𝑦) | 
| 61 | 60 | ad3antrrr 730 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) Fn 𝑦) | 
| 62 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) | 
| 63 |  | elfpw 9395 | . . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin) ↔ (𝑤 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∧ 𝑤 ∈ Fin)) | 
| 64 | 62, 63 | sylib 218 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → (𝑤 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∧ 𝑤 ∈ Fin)) | 
| 65 | 64 | simpld 494 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) | 
| 66 | 44 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) = ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 67 | 65, 66 | sseqtrd 4019 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ⊆ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 68 | 64 | simprd 495 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ∈ Fin) | 
| 69 |  | fipreima 9399 | . . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) Fn 𝑦 ∧ 𝑤 ⊆ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) ∧ 𝑤 ∈ Fin) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = 𝑤) | 
| 70 | 61, 67, 68, 69 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = 𝑤) | 
| 71 |  | eqcom 2743 | . . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = 𝑤 ↔ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) | 
| 72 | 71 | rexbii 3093 | . . . . . . . . . . 11
⊢
(∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) | 
| 73 | 70, 72 | sylib 218 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) | 
| 74 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) → 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) | 
| 75 | 74 | inteqd 4950 | . . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) → ∩ 𝑤 = ∩
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧)) | 
| 76 | 75 | eqeq2d 2747 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) → (∅ = ∩ 𝑤
↔ ∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) | 
| 77 | 53, 73, 76 | rexxfrd 5408 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)∅ = ∩ 𝑤
↔ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) | 
| 78 |  | 0ex 5306 | . . . . . . . . . 10
⊢ ∅
∈ V | 
| 79 |  | imassrn 6088 | . . . . . . . . . . . . 13
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ⊆ ran (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) | 
| 80 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) | 
| 81 | 54, 80 | opncldf1 23093 | . . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡(𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (𝑣 ∈ (Clsd‘𝐽) ↦ (∪
𝐽 ∖ 𝑣)))) | 
| 82 | 81 | simpld 494 | . . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top → (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–1-1-onto→(Clsd‘𝐽)) | 
| 83 |  | f1ofo 6854 | . . . . . . . . . . . . . . 15
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–1-1-onto→(Clsd‘𝐽) → (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽)) | 
| 84 | 82, 83 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽)) | 
| 85 |  | forn 6822 | . . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽) → ran (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (Clsd‘𝐽)) | 
| 86 | 84, 85 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top → ran (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) = (Clsd‘𝐽)) | 
| 87 | 79, 86 | sseqtrid 4025 | . . . . . . . . . . . 12
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ⊆ (Clsd‘𝐽)) | 
| 88 |  | fvex 6918 | . . . . . . . . . . . . 13
⊢
(Clsd‘𝐽)
∈ V | 
| 89 | 88 | elpw2 5333 | . . . . . . . . . . . 12
⊢ (((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽) ↔ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ⊆ (Clsd‘𝐽)) | 
| 90 | 87, 89 | sylibr 234 | . . . . . . . . . . 11
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) | 
| 91 | 90 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) | 
| 92 |  | elfi 9454 | . . . . . . . . . 10
⊢ ((∅
∈ V ∧ ((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ∈ 𝒫
(Clsd‘𝐽)) →
(∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) ↔ ∃𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)∅ = ∩ 𝑤)) | 
| 93 | 78, 91, 92 | sylancr 587 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) ↔ ∃𝑤 ∈ (𝒫 ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∩ Fin)∅ = ∩ 𝑤)) | 
| 94 |  | inundif 4478 | . . . . . . . . . . . . . 14
⊢
(((𝒫 𝑦 ∩
Fin) ∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) = (𝒫
𝑦 ∩
Fin) | 
| 95 | 94 | rexeqi 3324 | . . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
(((𝒫 𝑦 ∩ Fin)
∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅}))∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) | 
| 96 |  | rexun 4195 | . . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
(((𝒫 𝑦 ∩ Fin)
∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅}))∪ 𝐽 =
∪ 𝑧 ↔ (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})∪ 𝐽 =
∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) | 
| 97 | 95, 96 | bitr3i 277 | . . . . . . . . . . . 12
⊢
(∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧 ↔ (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) | 
| 98 |  | elinel2 4201 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ 𝑧 ∈
{∅}) | 
| 99 |  | elsni 4642 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ {∅} → 𝑧 = ∅) | 
| 100 | 98, 99 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ 𝑧 =
∅) | 
| 101 | 100 | unieqd 4919 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ ∪ 𝑧 = ∪
∅) | 
| 102 |  | uni0 4934 | . . . . . . . . . . . . . . . . . . 19
⊢ ∪ ∅ = ∅ | 
| 103 | 101, 102 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ ∪ 𝑧 = ∅) | 
| 104 | 103 | eqeq2d 2747 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ (∪ 𝐽 = ∪ 𝑧 ↔ ∪ 𝐽 =
∅)) | 
| 105 | 104 | biimpd 229 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅})
→ (∪ 𝐽 = ∪ 𝑧 → ∪ 𝐽 =
∅)) | 
| 106 | 105 | rexlimiv 3147 | . . . . . . . . . . . . . . 15
⊢
(∃𝑧 ∈
((𝒫 𝑦 ∩ Fin)
∩ {∅})∪ 𝐽 = ∪ 𝑧 → ∪ 𝐽 =
∅) | 
| 107 |  | ssidd 4006 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ⊆
𝑦) | 
| 108 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝐽 = ∅) | 
| 109 |  | 0ss 4399 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ∅
⊆ ∪ 𝑦 | 
| 110 | 108, 109 | eqsstrdi 4027 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝐽 ⊆ ∪ 𝑦) | 
| 111 | 24 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝑦 ⊆ ∪ 𝐽) | 
| 112 | 110, 111 | eqssd 4000 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝐽 = ∪ 𝑦) | 
| 113 | 112, 108 | eqtr3d 2778 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝑦 = ∅) | 
| 114 | 113, 3 | eqeltrdi 2848 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∪ 𝑦 ∈ Fin) | 
| 115 |  | pwfi 9358 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ 𝑦
∈ Fin ↔ 𝒫 ∪ 𝑦 ∈ Fin) | 
| 116 | 114, 115 | sylib 218 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝒫 ∪ 𝑦 ∈ Fin) | 
| 117 |  | pwuni 4944 | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ⊆ 𝒫 ∪ 𝑦 | 
| 118 |  | ssfi 9214 | . . . . . . . . . . . . . . . . . . . 20
⊢
((𝒫 ∪ 𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝒫 ∪ 𝑦)
→ 𝑦 ∈
Fin) | 
| 119 | 116, 117,
118 | sylancl 586 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ∈
Fin) | 
| 120 |  | elfpw 9395 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ⊆ 𝑦 ∧ 𝑦 ∈ Fin)) | 
| 121 | 107, 119,
120 | sylanbrc 583 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ∈
(𝒫 𝑦 ∩
Fin)) | 
| 122 |  | simprl 770 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ≠
∅) | 
| 123 |  | eldifsn 4785 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
↔ (𝑦 ∈ (𝒫
𝑦 ∩ Fin) ∧ 𝑦 ≠ ∅)) | 
| 124 | 121, 122,
123 | sylanbrc 583 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → 𝑦 ∈
((𝒫 𝑦 ∩ Fin)
∖ {∅})) | 
| 125 |  | unieq 4917 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → ∪ 𝑧 = ∪
𝑦) | 
| 126 | 125 | rspceeqv 3644 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
∧ ∪ 𝐽 = ∪ 𝑦) → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧) | 
| 127 | 124, 112,
126 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ (𝑦 ≠ ∅ ∧ ∪ 𝐽 =
∅)) → ∃𝑧
∈ ((𝒫 𝑦 ∩
Fin) ∖ {∅})∪ 𝐽 = ∪ 𝑧) | 
| 128 | 127 | expr 456 | . . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∪ 𝐽 =
∅ → ∃𝑧
∈ ((𝒫 𝑦 ∩
Fin) ∖ {∅})∪ 𝐽 = ∪ 𝑧)) | 
| 129 | 106, 128 | syl5 34 | . . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧)) | 
| 130 |  | idd 24 | . . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧 → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧)) | 
| 131 | 129, 130 | jaod 859 | . . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧) → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) | 
| 132 |  | olc 868 | . . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
((𝒫 𝑦 ∩ Fin)
∖ {∅})∪ 𝐽 = ∪ 𝑧 → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) | 
| 133 | 131, 132 | impbid1 225 | . . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩
{∅})∪ 𝐽 = ∪ 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧) ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) | 
| 134 | 97, 133 | bitrid 283 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∪ 𝐽 =
∪ 𝑧)) | 
| 135 |  | eldifi 4130 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
→ 𝑧 ∈ (𝒫
𝑦 ∩
Fin)) | 
| 136 | 135 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) | 
| 137 |  | elfpw 9395 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑧 ⊆ 𝑦 ∧ 𝑧 ∈ Fin)) | 
| 138 | 136, 137 | sylib 218 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (𝑧 ⊆ 𝑦 ∧ 𝑧 ∈ Fin)) | 
| 139 | 138 | simpld 494 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ⊆ 𝑦) | 
| 140 |  | simpllr 775 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑦 ⊆ 𝐽) | 
| 141 | 139, 140 | sstrd 3993 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ⊆ 𝐽) | 
| 142 | 141 | unissd 4916 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∪ 𝑧
⊆ ∪ 𝐽) | 
| 143 |  | eqss 3998 | . . . . . . . . . . . . . . . 16
⊢ (∪ 𝑧 =
∪ 𝐽 ↔ (∪ 𝑧 ⊆ ∪ 𝐽
∧ ∪ 𝐽 ⊆ ∪ 𝑧)) | 
| 144 | 143 | baib 535 | . . . . . . . . . . . . . . 15
⊢ (∪ 𝑧
⊆ ∪ 𝐽 → (∪ 𝑧 = ∪
𝐽 ↔ ∪ 𝐽
⊆ ∪ 𝑧)) | 
| 145 | 142, 144 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∪ 𝑧 =
∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑧)) | 
| 146 |  | eqcom 2743 | . . . . . . . . . . . . . 14
⊢ (∪ 𝑧 =
∪ 𝐽 ↔ ∪ 𝐽 = ∪
𝑧) | 
| 147 |  | ssdif0 4365 | . . . . . . . . . . . . . . 15
⊢ (∪ 𝐽
⊆ ∪ 𝑧 ↔ (∪ 𝐽 ∖ ∪ 𝑧) =
∅) | 
| 148 |  | eqcom 2743 | . . . . . . . . . . . . . . 15
⊢ ((∪ 𝐽
∖ ∪ 𝑧) = ∅ ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧)) | 
| 149 | 147, 148 | bitri 275 | . . . . . . . . . . . . . 14
⊢ (∪ 𝐽
⊆ ∪ 𝑧 ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧)) | 
| 150 | 145, 146,
149 | 3bitr3g 313 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∪ 𝐽 =
∪ 𝑧 ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧))) | 
| 151 |  | df-ima 5697 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = ran ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) ↾ 𝑧) | 
| 152 | 139 | resmptd 6057 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) ↾ 𝑧) = (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 153 | 152 | rneqd 5948 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ran
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) ↾ 𝑧) = ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 154 | 151, 153 | eqtrid 2788 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
((𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 155 | 154 | inteqd 4950 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = ∩
ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽
∖ 𝑟))) | 
| 156 | 56 | ralrimivw 3149 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ∈ Top → ∀𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) ∈ V) | 
| 157 | 156 | ad3antrrr 730 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
∀𝑟 ∈ 𝑧 (∪
𝐽 ∖ 𝑟) ∈ V) | 
| 158 |  | dfiin3g 5978 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑟 ∈
𝑧 (∪ 𝐽
∖ 𝑟) ∈ V →
∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 159 | 157, 158 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑧 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 160 |  | eldifsni 4789 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
→ 𝑧 ≠
∅) | 
| 161 | 160 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ≠ ∅) | 
| 162 |  | iindif2 5076 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 ≠ ∅ → ∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟)) | 
| 163 | 161, 162 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
∩ 𝑟 ∈ 𝑧 (∪ 𝐽 ∖ 𝑟) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟)) | 
| 164 | 155, 159,
163 | 3eqtr2d 2782 | . . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = (∪ 𝐽
∖ ∪ 𝑟 ∈ 𝑧 𝑟)) | 
| 165 |  | uniiun 5057 | . . . . . . . . . . . . . . . 16
⊢ ∪ 𝑧 =
∪ 𝑟 ∈ 𝑧 𝑟 | 
| 166 | 165 | difeq2i 4122 | . . . . . . . . . . . . . . 15
⊢ (∪ 𝐽
∖ ∪ 𝑧) = (∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟) | 
| 167 | 164, 166 | eqtr4di 2794 | . . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = (∪ 𝐽
∖ ∪ 𝑧)) | 
| 168 | 167 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) →
(∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ↔ ∅ = (∪ 𝐽
∖ ∪ 𝑧))) | 
| 169 | 150, 168 | bitr4d 282 | . . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∪ 𝐽 =
∪ 𝑧 ↔ ∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧))) | 
| 170 | 169 | rexbidva 3176 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∪ 𝐽 = ∪ 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅})∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) | 
| 171 | 134, 170 | bitrd 279 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧))) | 
| 172 |  | imaeq2 6073 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = ∅ → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ ∅)) | 
| 173 |  | ima0 6094 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ ∅) =
∅ | 
| 174 | 172, 173 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = ∅ → ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) = ∅) | 
| 175 | 174 | inteqd 4950 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = ∅ → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = ∩
∅) | 
| 176 |  | int0 4961 | . . . . . . . . . . . . . . . . . 18
⊢ ∩ ∅ = V | 
| 177 | 175, 176 | eqtrdi 2792 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ∅ → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) = V) | 
| 178 | 177 | neeq1d 2999 | . . . . . . . . . . . . . . . 16
⊢ (𝑧 = ∅ → (∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) ≠ ∅ ↔ V ≠
∅)) | 
| 179 | 14, 178 | mpbiri 258 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = ∅ → ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧) ≠ ∅) | 
| 180 | 179 | necomd 2995 | . . . . . . . . . . . . . 14
⊢ (𝑧 = ∅ → ∅ ≠
∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) | 
| 181 | 180 | necon2i 2974 | . . . . . . . . . . . . 13
⊢ (∅
= ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) → 𝑧 ≠ ∅) | 
| 182 |  | eldifsn 4785 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})
↔ (𝑧 ∈ (𝒫
𝑦 ∩ Fin) ∧ 𝑧 ≠ ∅)) | 
| 183 | 182 | rbaibr 537 | . . . . . . . . . . . . 13
⊢ (𝑧 ≠ ∅ → (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅}))) | 
| 184 | 181, 183 | syl 17 | . . . . . . . . . . . 12
⊢ (∅
= ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) → (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖
{∅}))) | 
| 185 | 184 | pm5.32ri 575 | . . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∅ =
∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧)) ↔ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) ∧ ∅
= ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧))) | 
| 186 | 185 | rexbii2 3089 | . . . . . . . . . 10
⊢
(∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∅ = ∩ ((𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑧) ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧)) | 
| 187 | 171, 186 | bitr4di 289 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∅ = ∩ ((𝑟
∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑧))) | 
| 188 | 77, 93, 187 | 3bitr4rd 312 | . . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 =
∪ 𝑧 ↔ ∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)))) | 
| 189 | 38, 188 | imbi12d 344 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑦 ≠ ∅) → ((∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) | 
| 190 | 23, 189 | pm2.61dane 3028 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) ↔ (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) | 
| 191 | 57 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∀𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) ∈ V) | 
| 192 |  | dfiin3g 5978 | . . . . . . . . . . 11
⊢
(∀𝑟 ∈
𝑦 (∪ 𝐽
∖ 𝑟) ∈ V →
∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 193 | 191, 192 | syl 17 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∩
𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 194 | 44 | inteqd 4950 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∩
((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) = ∩
ran (𝑟 ∈ 𝑦 ↦ (∪ 𝐽
∖ 𝑟))) | 
| 195 | 193, 194 | eqtr4d 2779 | . . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∩
𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∩ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) | 
| 196 | 195 | eqeq1d 2738 | . . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) = ∅)) | 
| 197 |  | nne 2943 | . . . . . . . 8
⊢ (¬
∩ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ≠ ∅ ↔ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) = ∅) | 
| 198 | 196, 197 | bitr4di 289 | . . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → (∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ ↔ ¬ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅)) | 
| 199 | 198 | imbi1d 341 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∩ 𝑟 ∈ 𝑦 (∪ 𝐽 ∖ 𝑟) = ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))) ↔ (¬ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠ ∅ → ∅
∈ (fi‘((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) | 
| 200 | 190, 199 | bitrd 279 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) ↔ (¬ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠ ∅ → ∅
∈ (fi‘((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))))) | 
| 201 |  | con1b 358 | . . . . 5
⊢ ((¬
∩ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ≠ ∅ → ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦))) ↔ (¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅)) | 
| 202 | 200, 201 | bitrdi 287 | . . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ((∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧) ↔ (¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) | 
| 203 | 1, 202 | sylan2 593 | . . 3
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽) → ((∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ (¬ ∅
∈ (fi‘((𝑟 ∈
𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) | 
| 204 | 203 | ralbidva 3175 | . 2
⊢ (𝐽 ∈ Top →
(∀𝑦 ∈ 𝒫
𝐽(∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) | 
| 205 | 54 | iscmp 23397 | . . 3
⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪
𝐽 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝐽 = ∪ 𝑧))) | 
| 206 | 205 | baib 535 | . 2
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔
∀𝑦 ∈ 𝒫
𝐽(∪ 𝐽 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪
𝑧))) | 
| 207 | 90 | adantr 480 | . . 3
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) | 
| 208 |  | simpl 482 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
𝐽 ∈
Top) | 
| 209 |  | funmpt 6603 | . . . . . 6
⊢ Fun
(𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) | 
| 210 | 209 | a1i 11 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) → Fun
(𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟))) | 
| 211 |  | elpwi 4606 | . . . . . . 7
⊢ (𝑥 ∈ 𝒫
(Clsd‘𝐽) → 𝑥 ⊆ (Clsd‘𝐽)) | 
| 212 |  | foima 6824 | . . . . . . . . 9
⊢ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)):𝐽–onto→(Clsd‘𝐽) → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽) = (Clsd‘𝐽)) | 
| 213 | 84, 212 | syl 17 | . . . . . . . 8
⊢ (𝐽 ∈ Top → ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽) = (Clsd‘𝐽)) | 
| 214 | 213 | sseq2d 4015 | . . . . . . 7
⊢ (𝐽 ∈ Top → (𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽) ↔ 𝑥 ⊆ (Clsd‘𝐽))) | 
| 215 | 211, 214 | imbitrrid 246 | . . . . . 6
⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝒫
(Clsd‘𝐽) → 𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽))) | 
| 216 | 215 | imp 406 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽)) | 
| 217 |  | ssimaexg 6994 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ Fun (𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) ∧ 𝑥 ⊆ ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝐽)) → ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) | 
| 218 | 208, 210,
216, 217 | syl3anc 1372 | . . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) | 
| 219 |  | df-rex 3070 | . . . . 5
⊢
(∃𝑦 ∈
𝒫 𝐽𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) | 
| 220 |  | velpw 4604 | . . . . . . 7
⊢ (𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽) | 
| 221 | 220 | anbi1i 624 | . . . . . 6
⊢ ((𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) ↔ (𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) | 
| 222 | 221 | exbii 1847 | . . . . 5
⊢
(∃𝑦(𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) | 
| 223 | 219, 222 | bitri 275 | . . . 4
⊢
(∃𝑦 ∈
𝒫 𝐽𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) | 
| 224 | 218, 223 | sylibr 234 | . . 3
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫
(Clsd‘𝐽)) →
∃𝑦 ∈ 𝒫
𝐽𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) | 
| 225 |  | simpr 484 | . . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) | 
| 226 | 225 | fveq2d 6909 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (fi‘𝑥) = (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦))) | 
| 227 | 226 | eleq2d 2826 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)))) | 
| 228 | 227 | notbid 318 | . . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (¬ ∅ ∈
(fi‘𝑥) ↔ ¬
∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)))) | 
| 229 | 225 | inteqd 4950 | . . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → ∩ 𝑥 = ∩
((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) | 
| 230 | 229 | neeq1d 2999 | . . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → (∩ 𝑥 ≠ ∅ ↔ ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅)) | 
| 231 | 228, 230 | imbi12d 344 | . . 3
⊢ ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → ((¬ ∅ ∈
(fi‘𝑥) → ∩ 𝑥
≠ ∅) ↔ (¬ ∅ ∈ (fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽 ∖ 𝑟)) “ 𝑦)) → ∩
((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) | 
| 232 | 207, 224,
231 | ralxfrd 5407 | . 2
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝒫
(Clsd‘𝐽)(¬
∅ ∈ (fi‘𝑥)
→ ∩ 𝑥 ≠ ∅) ↔ ∀𝑦 ∈ 𝒫 𝐽(¬ ∅ ∈
(fi‘((𝑟 ∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦)) → ∩ ((𝑟
∈ 𝐽 ↦ (∪ 𝐽
∖ 𝑟)) “ 𝑦) ≠
∅))) | 
| 233 | 204, 206,
232 | 3bitr4d 311 | 1
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔
∀𝑥 ∈ 𝒫
(Clsd‘𝐽)(¬
∅ ∈ (fi‘𝑥)
→ ∩ 𝑥 ≠ ∅))) |