MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfi Structured version   Visualization version   GIF version

Theorem cmpfi 22016
Description: If a topology is compact and a collection of closed sets has the finite intersection property, its intersection is nonempty. (Contributed by Jeff Hankins, 25-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
cmpfi (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
Distinct variable group:   𝑥,𝐽

Proof of Theorem cmpfi
Dummy variables 𝑣 𝑟 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4548 . . . 4 (𝑦 ∈ 𝒫 𝐽𝑦𝐽)
2 0ss 4350 . . . . . . . . . . 11 ∅ ⊆ 𝑦
3 0fin 8746 . . . . . . . . . . 11 ∅ ∈ Fin
4 elfpw 8826 . . . . . . . . . . 11 (∅ ∈ (𝒫 𝑦 ∩ Fin) ↔ (∅ ⊆ 𝑦 ∧ ∅ ∈ Fin))
52, 3, 4mpbir2an 709 . . . . . . . . . 10 ∅ ∈ (𝒫 𝑦 ∩ Fin)
6 simprr 771 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 = ∅ ∧ 𝐽 = 𝑦)) → 𝐽 = 𝑦)
7 simprl 769 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 = ∅ ∧ 𝐽 = 𝑦)) → 𝑦 = ∅)
87unieqd 4852 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 = ∅ ∧ 𝐽 = 𝑦)) → 𝑦 = ∅)
96, 8eqtrd 2856 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 = ∅ ∧ 𝐽 = 𝑦)) → 𝐽 = ∅)
10 unieq 4849 . . . . . . . . . . 11 (𝑧 = ∅ → 𝑧 = ∅)
1110rspceeqv 3638 . . . . . . . . . 10 ((∅ ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝐽 = ∅) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)
125, 9, 11sylancr 589 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 = ∅ ∧ 𝐽 = 𝑦)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)
1312expr 459 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 = ∅) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
14 vn0 4304 . . . . . . . . . 10 V ≠ ∅
15 iineq1 4936 . . . . . . . . . . . . . 14 (𝑦 = ∅ → 𝑟𝑦 ( 𝐽𝑟) = 𝑟 ∈ ∅ ( 𝐽𝑟))
1615adantl 484 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 = ∅) → 𝑟𝑦 ( 𝐽𝑟) = 𝑟 ∈ ∅ ( 𝐽𝑟))
17 0iin 4987 . . . . . . . . . . . . 13 𝑟 ∈ ∅ ( 𝐽𝑟) = V
1816, 17syl6eq 2872 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 = ∅) → 𝑟𝑦 ( 𝐽𝑟) = V)
1918eqeq1d 2823 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 = ∅) → ( 𝑟𝑦 ( 𝐽𝑟) = ∅ ↔ V = ∅))
2019necon3bbid 3053 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 = ∅) → (¬ 𝑟𝑦 ( 𝐽𝑟) = ∅ ↔ V ≠ ∅))
2114, 20mpbiri 260 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 = ∅) → ¬ 𝑟𝑦 ( 𝐽𝑟) = ∅)
2221pm2.21d 121 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 = ∅) → ( 𝑟𝑦 ( 𝐽𝑟) = ∅ → ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))))
2313, 222thd 267 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 = ∅) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧) ↔ ( 𝑟𝑦 ( 𝐽𝑟) = ∅ → ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))))
24 uniss 4846 . . . . . . . . . . . 12 (𝑦𝐽 𝑦 𝐽)
2524ad2antlr 725 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → 𝑦 𝐽)
26 eqss 3982 . . . . . . . . . . . 12 ( 𝑦 = 𝐽 ↔ ( 𝑦 𝐽 𝐽 𝑦))
2726baib 538 . . . . . . . . . . 11 ( 𝑦 𝐽 → ( 𝑦 = 𝐽 𝐽 𝑦))
2825, 27syl 17 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → ( 𝑦 = 𝐽 𝐽 𝑦))
29 eqcom 2828 . . . . . . . . . 10 ( 𝑦 = 𝐽 𝐽 = 𝑦)
30 ssdif0 4323 . . . . . . . . . 10 ( 𝐽 𝑦 ↔ ( 𝐽 𝑦) = ∅)
3128, 29, 303bitr3g 315 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → ( 𝐽 = 𝑦 ↔ ( 𝐽 𝑦) = ∅))
32 iindif2 4999 . . . . . . . . . . . 12 (𝑦 ≠ ∅ → 𝑟𝑦 ( 𝐽𝑟) = ( 𝐽 𝑟𝑦 𝑟))
3332adantl 484 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → 𝑟𝑦 ( 𝐽𝑟) = ( 𝐽 𝑟𝑦 𝑟))
34 uniiun 4982 . . . . . . . . . . . 12 𝑦 = 𝑟𝑦 𝑟
3534difeq2i 4096 . . . . . . . . . . 11 ( 𝐽 𝑦) = ( 𝐽 𝑟𝑦 𝑟)
3633, 35syl6eqr 2874 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → 𝑟𝑦 ( 𝐽𝑟) = ( 𝐽 𝑦))
3736eqeq1d 2823 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → ( 𝑟𝑦 ( 𝐽𝑟) = ∅ ↔ ( 𝐽 𝑦) = ∅))
3831, 37bitr4d 284 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → ( 𝐽 = 𝑦 𝑟𝑦 ( 𝐽𝑟) = ∅))
39 imassrn 5940 . . . . . . . . . . . 12 ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ⊆ ran (𝑟𝑦 ↦ ( 𝐽𝑟))
40 df-ima 5568 . . . . . . . . . . . . . 14 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) = ran ((𝑟𝐽 ↦ ( 𝐽𝑟)) ↾ 𝑦)
41 resmpt 5905 . . . . . . . . . . . . . . . 16 (𝑦𝐽 → ((𝑟𝐽 ↦ ( 𝐽𝑟)) ↾ 𝑦) = (𝑟𝑦 ↦ ( 𝐽𝑟)))
4241adantl 484 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) ↾ 𝑦) = (𝑟𝑦 ↦ ( 𝐽𝑟)))
4342rneqd 5808 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ran ((𝑟𝐽 ↦ ( 𝐽𝑟)) ↾ 𝑦) = ran (𝑟𝑦 ↦ ( 𝐽𝑟)))
4440, 43syl5eq 2868 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) = ran (𝑟𝑦 ↦ ( 𝐽𝑟)))
4544ad2antrr 724 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) = ran (𝑟𝑦 ↦ ( 𝐽𝑟)))
4639, 45sseqtrrid 4020 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ⊆ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))
47 funmpt 6393 . . . . . . . . . . . 12 Fun (𝑟𝑦 ↦ ( 𝐽𝑟))
48 elinel2 4173 . . . . . . . . . . . . 13 (𝑧 ∈ (𝒫 𝑦 ∩ Fin) → 𝑧 ∈ Fin)
4948adantl 484 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → 𝑧 ∈ Fin)
50 imafi 8817 . . . . . . . . . . . 12 ((Fun (𝑟𝑦 ↦ ( 𝐽𝑟)) ∧ 𝑧 ∈ Fin) → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ∈ Fin)
5147, 49, 50sylancr 589 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ∈ Fin)
52 elfpw 8826 . . . . . . . . . . 11 (((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin) ↔ (((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ⊆ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∧ ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ∈ Fin))
5346, 51, 52sylanbrc 585 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ (𝒫 𝑦 ∩ Fin)) → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin))
54 eqid 2821 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
5554topopn 21514 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → 𝐽𝐽)
56 difexg 5231 . . . . . . . . . . . . . . . 16 ( 𝐽𝐽 → ( 𝐽𝑟) ∈ V)
5755, 56syl 17 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → ( 𝐽𝑟) ∈ V)
5857ralrimivw 3183 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → ∀𝑟𝑦 ( 𝐽𝑟) ∈ V)
59 eqid 2821 . . . . . . . . . . . . . . 15 (𝑟𝑦 ↦ ( 𝐽𝑟)) = (𝑟𝑦 ↦ ( 𝐽𝑟))
6059fnmpt 6488 . . . . . . . . . . . . . 14 (∀𝑟𝑦 ( 𝐽𝑟) ∈ V → (𝑟𝑦 ↦ ( 𝐽𝑟)) Fn 𝑦)
6158, 60syl 17 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (𝑟𝑦 ↦ ( 𝐽𝑟)) Fn 𝑦)
6261ad3antrrr 728 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)) → (𝑟𝑦 ↦ ( 𝐽𝑟)) Fn 𝑦)
63 simpr 487 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin))
64 elfpw 8826 . . . . . . . . . . . . . . 15 (𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin) ↔ (𝑤 ⊆ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∧ 𝑤 ∈ Fin))
6563, 64sylib 220 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)) → (𝑤 ⊆ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∧ 𝑤 ∈ Fin))
6665simpld 497 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ⊆ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))
6744ad2antrr 724 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) = ran (𝑟𝑦 ↦ ( 𝐽𝑟)))
6866, 67sseqtrd 4007 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ⊆ ran (𝑟𝑦 ↦ ( 𝐽𝑟)))
6965simprd 498 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)) → 𝑤 ∈ Fin)
70 fipreima 8830 . . . . . . . . . . . 12 (((𝑟𝑦 ↦ ( 𝐽𝑟)) Fn 𝑦𝑤 ⊆ ran (𝑟𝑦 ↦ ( 𝐽𝑟)) ∧ 𝑤 ∈ Fin) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = 𝑤)
7162, 68, 69, 70syl3anc 1367 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = 𝑤)
72 eqcom 2828 . . . . . . . . . . . 12 (((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = 𝑤𝑤 = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧))
7372rexbii 3247 . . . . . . . . . . 11 (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑤 = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧))
7471, 73sylib 220 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑤 = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧))
75 simpr 487 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)) → 𝑤 = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧))
7675inteqd 4881 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)) → 𝑤 = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧))
7776eqeq2d 2832 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑤 = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)) → (∅ = 𝑤 ↔ ∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)))
7853, 74, 77rexxfrd 5310 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)∅ = 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)))
79 0ex 5211 . . . . . . . . . 10 ∅ ∈ V
80 imassrn 5940 . . . . . . . . . . . . 13 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ⊆ ran (𝑟𝐽 ↦ ( 𝐽𝑟))
81 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑟𝐽 ↦ ( 𝐽𝑟)) = (𝑟𝐽 ↦ ( 𝐽𝑟))
8254, 81opncldf1 21692 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → ((𝑟𝐽 ↦ ( 𝐽𝑟)):𝐽1-1-onto→(Clsd‘𝐽) ∧ (𝑟𝐽 ↦ ( 𝐽𝑟)) = (𝑣 ∈ (Clsd‘𝐽) ↦ ( 𝐽𝑣))))
8382simpld 497 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → (𝑟𝐽 ↦ ( 𝐽𝑟)):𝐽1-1-onto→(Clsd‘𝐽))
84 f1ofo 6622 . . . . . . . . . . . . . . 15 ((𝑟𝐽 ↦ ( 𝐽𝑟)):𝐽1-1-onto→(Clsd‘𝐽) → (𝑟𝐽 ↦ ( 𝐽𝑟)):𝐽onto→(Clsd‘𝐽))
8583, 84syl 17 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → (𝑟𝐽 ↦ ( 𝐽𝑟)):𝐽onto→(Clsd‘𝐽))
86 forn 6593 . . . . . . . . . . . . . 14 ((𝑟𝐽 ↦ ( 𝐽𝑟)):𝐽onto→(Clsd‘𝐽) → ran (𝑟𝐽 ↦ ( 𝐽𝑟)) = (Clsd‘𝐽))
8785, 86syl 17 . . . . . . . . . . . . 13 (𝐽 ∈ Top → ran (𝑟𝐽 ↦ ( 𝐽𝑟)) = (Clsd‘𝐽))
8880, 87sseqtrid 4019 . . . . . . . . . . . 12 (𝐽 ∈ Top → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ⊆ (Clsd‘𝐽))
89 fvex 6683 . . . . . . . . . . . . 13 (Clsd‘𝐽) ∈ V
9089elpw2 5248 . . . . . . . . . . . 12 (((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽) ↔ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ⊆ (Clsd‘𝐽))
9188, 90sylibr 236 . . . . . . . . . . 11 (𝐽 ∈ Top → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽))
9291ad2antrr 724 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽))
93 elfi 8877 . . . . . . . . . 10 ((∅ ∈ V ∧ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽)) → (∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) ↔ ∃𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)∅ = 𝑤))
9479, 92, 93sylancr 589 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) ↔ ∃𝑤 ∈ (𝒫 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∩ Fin)∅ = 𝑤))
95 inundif 4427 . . . . . . . . . . . . . 14 (((𝒫 𝑦 ∩ Fin) ∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) = (𝒫 𝑦 ∩ Fin)
9695rexeqi 3414 . . . . . . . . . . . . 13 (∃𝑧 ∈ (((𝒫 𝑦 ∩ Fin) ∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) 𝐽 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)
97 rexun 4166 . . . . . . . . . . . . 13 (∃𝑧 ∈ (((𝒫 𝑦 ∩ Fin) ∩ {∅}) ∪ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) 𝐽 = 𝑧 ↔ (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) 𝐽 = 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧))
9896, 97bitr3i 279 . . . . . . . . . . . 12 (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧 ↔ (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) 𝐽 = 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧))
99 elinel2 4173 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) → 𝑧 ∈ {∅})
100 elsni 4584 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ {∅} → 𝑧 = ∅)
10199, 100syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) → 𝑧 = ∅)
102101unieqd 4852 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) → 𝑧 = ∅)
103 uni0 4866 . . . . . . . . . . . . . . . . . . 19 ∅ = ∅
104102, 103syl6eq 2872 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) → 𝑧 = ∅)
105104eqeq2d 2832 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) → ( 𝐽 = 𝑧 𝐽 = ∅))
106105biimpd 231 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) → ( 𝐽 = 𝑧 𝐽 = ∅))
107106rexlimiv 3280 . . . . . . . . . . . . . . 15 (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) 𝐽 = 𝑧 𝐽 = ∅)
108 ssidd 3990 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝑦𝑦)
109 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝐽 = ∅)
110 0ss 4350 . . . . . . . . . . . . . . . . . . . . . . . . 25 ∅ ⊆ 𝑦
111109, 110eqsstrdi 4021 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝐽 𝑦)
11224ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝑦 𝐽)
113111, 112eqssd 3984 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝐽 = 𝑦)
114113, 109eqtr3d 2858 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝑦 = ∅)
115114, 3eqeltrdi 2921 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝑦 ∈ Fin)
116 pwfi 8819 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
117115, 116sylib 220 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝒫 𝑦 ∈ Fin)
118 pwuni 4875 . . . . . . . . . . . . . . . . . . . 20 𝑦 ⊆ 𝒫 𝑦
119 ssfi 8738 . . . . . . . . . . . . . . . . . . . 20 ((𝒫 𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝒫 𝑦) → 𝑦 ∈ Fin)
120117, 118, 119sylancl 588 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝑦 ∈ Fin)
121 elfpw 8826 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦𝑦𝑦 ∈ Fin))
122108, 120, 121sylanbrc 585 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝑦 ∈ (𝒫 𝑦 ∩ Fin))
123 simprl 769 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝑦 ≠ ∅)
124 eldifsn 4719 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) ↔ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑦 ≠ ∅))
125122, 123, 124sylanbrc 585 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → 𝑦 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}))
126 unieq 4849 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 𝑧 = 𝑦)
127126rspceeqv 3638 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) ∧ 𝐽 = 𝑦) → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧)
128125, 113, 127syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ (𝑦 ≠ ∅ ∧ 𝐽 = ∅)) → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧)
129128expr 459 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → ( 𝐽 = ∅ → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧))
130107, 129syl5 34 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) 𝐽 = 𝑧 → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧))
131 idd 24 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧 → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧))
132130, 131jaod 855 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → ((∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) 𝐽 = 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧) → ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧))
133 olc 864 . . . . . . . . . . . . 13 (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧 → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) 𝐽 = 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧))
134132, 133impbid1 227 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → ((∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∩ {∅}) 𝐽 = 𝑧 ∨ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧) ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧))
13598, 134syl5bb 285 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧))
136 eldifi 4103 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) → 𝑧 ∈ (𝒫 𝑦 ∩ Fin))
137136adantl 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ∈ (𝒫 𝑦 ∩ Fin))
138 elfpw 8826 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑧𝑦𝑧 ∈ Fin))
139137, 138sylib 220 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (𝑧𝑦𝑧 ∈ Fin))
140139simpld 497 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧𝑦)
141 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑦𝐽)
142140, 141sstrd 3977 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧𝐽)
143142unissd 4848 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 𝐽)
144 eqss 3982 . . . . . . . . . . . . . . . 16 ( 𝑧 = 𝐽 ↔ ( 𝑧 𝐽 𝐽 𝑧))
145144baib 538 . . . . . . . . . . . . . . 15 ( 𝑧 𝐽 → ( 𝑧 = 𝐽 𝐽 𝑧))
146143, 145syl 17 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ( 𝑧 = 𝐽 𝐽 𝑧))
147 eqcom 2828 . . . . . . . . . . . . . 14 ( 𝑧 = 𝐽 𝐽 = 𝑧)
148 ssdif0 4323 . . . . . . . . . . . . . . 15 ( 𝐽 𝑧 ↔ ( 𝐽 𝑧) = ∅)
149 eqcom 2828 . . . . . . . . . . . . . . 15 (( 𝐽 𝑧) = ∅ ↔ ∅ = ( 𝐽 𝑧))
150148, 149bitri 277 . . . . . . . . . . . . . 14 ( 𝐽 𝑧 ↔ ∅ = ( 𝐽 𝑧))
151146, 147, 1503bitr3g 315 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ( 𝐽 = 𝑧 ↔ ∅ = ( 𝐽 𝑧)))
152 df-ima 5568 . . . . . . . . . . . . . . . . . 18 ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = ran ((𝑟𝑦 ↦ ( 𝐽𝑟)) ↾ 𝑧)
153140resmptd 5908 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ((𝑟𝑦 ↦ ( 𝐽𝑟)) ↾ 𝑧) = (𝑟𝑧 ↦ ( 𝐽𝑟)))
154153rneqd 5808 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ran ((𝑟𝑦 ↦ ( 𝐽𝑟)) ↾ 𝑧) = ran (𝑟𝑧 ↦ ( 𝐽𝑟)))
155152, 154syl5eq 2868 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = ran (𝑟𝑧 ↦ ( 𝐽𝑟)))
156155inteqd 4881 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = ran (𝑟𝑧 ↦ ( 𝐽𝑟)))
15757ralrimivw 3183 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ Top → ∀𝑟𝑧 ( 𝐽𝑟) ∈ V)
158157ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ∀𝑟𝑧 ( 𝐽𝑟) ∈ V)
159 dfiin3g 5836 . . . . . . . . . . . . . . . . 17 (∀𝑟𝑧 ( 𝐽𝑟) ∈ V → 𝑟𝑧 ( 𝐽𝑟) = ran (𝑟𝑧 ↦ ( 𝐽𝑟)))
160158, 159syl 17 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑟𝑧 ( 𝐽𝑟) = ran (𝑟𝑧 ↦ ( 𝐽𝑟)))
161 eldifsni 4722 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) → 𝑧 ≠ ∅)
162161adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑧 ≠ ∅)
163 iindif2 4999 . . . . . . . . . . . . . . . . 17 (𝑧 ≠ ∅ → 𝑟𝑧 ( 𝐽𝑟) = ( 𝐽 𝑟𝑧 𝑟))
164162, 163syl 17 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → 𝑟𝑧 ( 𝐽𝑟) = ( 𝐽 𝑟𝑧 𝑟))
165156, 160, 1643eqtr2d 2862 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = ( 𝐽 𝑟𝑧 𝑟))
166 uniiun 4982 . . . . . . . . . . . . . . . 16 𝑧 = 𝑟𝑧 𝑟
167166difeq2i 4096 . . . . . . . . . . . . . . 15 ( 𝐽 𝑧) = ( 𝐽 𝑟𝑧 𝑟)
168165, 167syl6eqr 2874 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = ( 𝐽 𝑧))
169168eqeq2d 2832 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → (∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ↔ ∅ = ( 𝐽 𝑧)))
170151, 169bitr4d 284 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) ∧ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})) → ( 𝐽 = 𝑧 ↔ ∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)))
171170rexbidva 3296 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) 𝐽 = 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)))
172135, 171bitrd 281 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧 ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)))
173 imaeq2 5925 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ∅ → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ ∅))
174 ima0 5945 . . . . . . . . . . . . . . . . . . . 20 ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ ∅) = ∅
175173, 174syl6eq 2872 . . . . . . . . . . . . . . . . . . 19 (𝑧 = ∅ → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = ∅)
176175inteqd 4881 . . . . . . . . . . . . . . . . . 18 (𝑧 = ∅ → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = ∅)
177 int0 4890 . . . . . . . . . . . . . . . . . 18 ∅ = V
178176, 177syl6eq 2872 . . . . . . . . . . . . . . . . 17 (𝑧 = ∅ → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) = V)
179178neeq1d 3075 . . . . . . . . . . . . . . . 16 (𝑧 = ∅ → ( ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ≠ ∅ ↔ V ≠ ∅))
18014, 179mpbiri 260 . . . . . . . . . . . . . . 15 (𝑧 = ∅ → ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ≠ ∅)
181180necomd 3071 . . . . . . . . . . . . . 14 (𝑧 = ∅ → ∅ ≠ ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧))
182181necon2i 3050 . . . . . . . . . . . . 13 (∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) → 𝑧 ≠ ∅)
183 eldifsn 4719 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) ↔ (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑧 ≠ ∅))
184183rbaibr 540 . . . . . . . . . . . . 13 (𝑧 ≠ ∅ → (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})))
185182, 184syl 17 . . . . . . . . . . . 12 (∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) → (𝑧 ∈ (𝒫 𝑦 ∩ Fin) ↔ 𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})))
186185pm5.32ri 578 . . . . . . . . . . 11 ((𝑧 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)) ↔ (𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅}) ∧ ∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)))
187186rexbii2 3245 . . . . . . . . . 10 (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧) ↔ ∃𝑧 ∈ ((𝒫 𝑦 ∩ Fin) ∖ {∅})∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧))
188172, 187syl6bbr 291 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∅ = ((𝑟𝑦 ↦ ( 𝐽𝑟)) “ 𝑧)))
18978, 94, 1883bitr4rd 314 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧 ↔ ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))))
19038, 189imbi12d 347 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑦𝐽) ∧ 𝑦 ≠ ∅) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧) ↔ ( 𝑟𝑦 ( 𝐽𝑟) = ∅ → ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))))
19123, 190pm2.61dane 3104 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝐽) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧) ↔ ( 𝑟𝑦 ( 𝐽𝑟) = ∅ → ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))))
19258adantr 483 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ∀𝑟𝑦 ( 𝐽𝑟) ∈ V)
193 dfiin3g 5836 . . . . . . . . . . 11 (∀𝑟𝑦 ( 𝐽𝑟) ∈ V → 𝑟𝑦 ( 𝐽𝑟) = ran (𝑟𝑦 ↦ ( 𝐽𝑟)))
194192, 193syl 17 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑦𝐽) → 𝑟𝑦 ( 𝐽𝑟) = ran (𝑟𝑦 ↦ ( 𝐽𝑟)))
19544inteqd 4881 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) = ran (𝑟𝑦 ↦ ( 𝐽𝑟)))
196194, 195eqtr4d 2859 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦𝐽) → 𝑟𝑦 ( 𝐽𝑟) = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))
197196eqeq1d 2823 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝑟𝑦 ( 𝐽𝑟) = ∅ ↔ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) = ∅))
198 nne 3020 . . . . . . . 8 ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅ ↔ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) = ∅)
199197, 198syl6bbr 291 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝑟𝑦 ( 𝐽𝑟) = ∅ ↔ ¬ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅))
200199imbi1d 344 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑦𝐽) → (( 𝑟𝑦 ( 𝐽𝑟) = ∅ → ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))) ↔ (¬ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅ → ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))))
201191, 200bitrd 281 . . . . 5 ((𝐽 ∈ Top ∧ 𝑦𝐽) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧) ↔ (¬ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅ → ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))))
202 con1b 361 . . . . 5 ((¬ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅ → ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))) ↔ (¬ ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅))
203201, 202syl6bb 289 . . . 4 ((𝐽 ∈ Top ∧ 𝑦𝐽) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧) ↔ (¬ ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅)))
2041, 203sylan2 594 . . 3 ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽) → (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧) ↔ (¬ ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅)))
205204ralbidva 3196 . 2 (𝐽 ∈ Top → (∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽(¬ ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅)))
20654iscmp 21996 . . 3 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)))
207206baib 538 . 2 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)))
20891adantr 483 . . 3 ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ∈ 𝒫 (Clsd‘𝐽))
209 simpl 485 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → 𝐽 ∈ Top)
210 funmpt 6393 . . . . . 6 Fun (𝑟𝐽 ↦ ( 𝐽𝑟))
211210a1i 11 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → Fun (𝑟𝐽 ↦ ( 𝐽𝑟)))
212 elpwi 4548 . . . . . . 7 (𝑥 ∈ 𝒫 (Clsd‘𝐽) → 𝑥 ⊆ (Clsd‘𝐽))
213 foima 6595 . . . . . . . . 9 ((𝑟𝐽 ↦ ( 𝐽𝑟)):𝐽onto→(Clsd‘𝐽) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝐽) = (Clsd‘𝐽))
21485, 213syl 17 . . . . . . . 8 (𝐽 ∈ Top → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝐽) = (Clsd‘𝐽))
215214sseq2d 3999 . . . . . . 7 (𝐽 ∈ Top → (𝑥 ⊆ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝐽) ↔ 𝑥 ⊆ (Clsd‘𝐽)))
216212, 215syl5ibr 248 . . . . . 6 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 (Clsd‘𝐽) → 𝑥 ⊆ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝐽)))
217216imp 409 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → 𝑥 ⊆ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝐽))
218 ssimaexg 6749 . . . . 5 ((𝐽 ∈ Top ∧ Fun (𝑟𝐽 ↦ ( 𝐽𝑟)) ∧ 𝑥 ⊆ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝐽)) → ∃𝑦(𝑦𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))
219209, 211, 217, 218syl3anc 1367 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → ∃𝑦(𝑦𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))
220 df-rex 3144 . . . . 5 (∃𝑦 ∈ 𝒫 𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝒫 𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))
221 velpw 4544 . . . . . . 7 (𝑦 ∈ 𝒫 𝐽𝑦𝐽)
222221anbi1i 625 . . . . . 6 ((𝑦 ∈ 𝒫 𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) ↔ (𝑦𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))
223222exbii 1848 . . . . 5 (∃𝑦(𝑦 ∈ 𝒫 𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) ↔ ∃𝑦(𝑦𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))
224220, 223bitri 277 . . . 4 (∃𝑦 ∈ 𝒫 𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ↔ ∃𝑦(𝑦𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))
225219, 224sylibr 236 . . 3 ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 (Clsd‘𝐽)) → ∃𝑦 ∈ 𝒫 𝐽𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))
226 simpr 487 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → 𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))
227226fveq2d 6674 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → (fi‘𝑥) = (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)))
228227eleq2d 2898 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))))
229228notbid 320 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))))
230226inteqd 4881 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → 𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦))
231230neeq1d 3075 . . . 4 ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → ( 𝑥 ≠ ∅ ↔ ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅))
232229, 231imbi12d 347 . . 3 ((𝐽 ∈ Top ∧ 𝑥 = ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → ((¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅)))
233208, 225, 232ralxfrd 5309 . 2 (𝐽 ∈ Top → (∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅) ↔ ∀𝑦 ∈ 𝒫 𝐽(¬ ∅ ∈ (fi‘((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦)) → ((𝑟𝐽 ↦ ( 𝐽𝑟)) “ 𝑦) ≠ ∅)))
234205, 207, 2333bitr4d 313 1 (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → 𝑥 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567   cuni 4838   cint 4876   ciun 4919   ciin 4920  cmpt 5146  ccnv 5554  ran crn 5556  cres 5557  cima 5558  Fun wfun 6349   Fn wfn 6350  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  Fincfn 8509  ficfi 8874  Topctop 21501  Clsdccld 21624  Compccmp 21994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-top 21502  df-cld 21627  df-cmp 21995
This theorem is referenced by:  cmpfii  22017  fclscmp  22638  heibor1lem  35102
  Copyright terms: Public domain W3C validator