Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volsupnfl Structured version   Visualization version   GIF version

Theorem volsupnfl 36836
Description: volsup 25305 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 2-Jan-2018.)
Hypothesis
Ref Expression
volsupnfl.0 ((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < ))
Assertion
Ref Expression
volsupnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑥,𝐴

Proof of Theorem volsupnfl
Dummy variables 𝑔 𝑚 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4918 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4938 . . . . . . . . 9 ∅ = ∅
31, 2eqtrdi 2786 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6894 . . . . . . 7 (𝐴 = ∅ → (vol‘ 𝐴) = (vol‘∅))
5 0mbl 25288 . . . . . . . . 9 ∅ ∈ dom vol
6 mblvol 25279 . . . . . . . . 9 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
75, 6ax-mp 5 . . . . . . . 8 (vol‘∅) = (vol*‘∅)
8 ovol0 25242 . . . . . . . 8 (vol*‘∅) = 0
97, 8eqtri 2758 . . . . . . 7 (vol‘∅) = 0
104, 9eqtr2di 2787 . . . . . 6 (𝐴 = ∅ → 0 = (vol‘ 𝐴))
1110a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
12 reldom 8947 . . . . . . . . . . 11 Rel ≼
1312brrelex1i 5731 . . . . . . . . . 10 (𝐴 ≼ ℕ → 𝐴 ∈ V)
14 0sdomg 9106 . . . . . . . . . 10 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1513, 14syl 17 . . . . . . . . 9 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1615biimparc 478 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
17 fodomr 9130 . . . . . . . 8 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
1816, 17sylancom 586 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
19 unissb 4942 . . . . . . . . . . . . 13 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
2019anbi1i 622 . . . . . . . . . . . 12 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
21 r19.26 3109 . . . . . . . . . . . 12 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2220, 21bitr4i 277 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
23 ovolctb2 25241 . . . . . . . . . . . . 13 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (vol*‘𝑥) = 0)
24 nulmbl 25284 . . . . . . . . . . . . . 14 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → 𝑥 ∈ dom vol)
25 mblvol 25279 . . . . . . . . . . . . . . . 16 (𝑥 ∈ dom vol → (vol‘𝑥) = (vol*‘𝑥))
26 eqtr 2753 . . . . . . . . . . . . . . . . 17 (((vol‘𝑥) = (vol*‘𝑥) ∧ (vol*‘𝑥) = 0) → (vol‘𝑥) = 0)
2726expcom 412 . . . . . . . . . . . . . . . 16 ((vol*‘𝑥) = 0 → ((vol‘𝑥) = (vol*‘𝑥) → (vol‘𝑥) = 0))
2825, 27syl5 34 . . . . . . . . . . . . . . 15 ((vol*‘𝑥) = 0 → (𝑥 ∈ dom vol → (vol‘𝑥) = 0))
2928adantl 480 . . . . . . . . . . . . . 14 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (𝑥 ∈ dom vol → (vol‘𝑥) = 0))
3024, 29jcai 515 . . . . . . . . . . . . 13 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
3123, 30syldan 589 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
3231ralimi 3081 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
3322, 32sylbi 216 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
3433ancoms 457 . . . . . . . . 9 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
35 fzfi 13941 . . . . . . . . . . . . . . 15 (1...𝑚) ∈ Fin
36 fzssuz 13546 . . . . . . . . . . . . . . . . 17 (1...𝑚) ⊆ (ℤ‘1)
37 nnuz 12869 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
3836, 37sseqtrri 4018 . . . . . . . . . . . . . . . 16 (1...𝑚) ⊆ ℕ
39 fof 6804 . . . . . . . . . . . . . . . . . . . 20 (𝑔:ℕ–onto𝐴𝑔:ℕ⟶𝐴)
4039ffvelcdmda 7085 . . . . . . . . . . . . . . . . . . 19 ((𝑔:ℕ–onto𝐴𝑙 ∈ ℕ) → (𝑔𝑙) ∈ 𝐴)
41 eleq1 2819 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑔𝑙) → (𝑥 ∈ dom vol ↔ (𝑔𝑙) ∈ dom vol))
42 fveqeq2 6899 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑔𝑙) → ((vol‘𝑥) = 0 ↔ (vol‘(𝑔𝑙)) = 0))
4341, 42anbi12d 629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑔𝑙) → ((𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ↔ ((𝑔𝑙) ∈ dom vol ∧ (vol‘(𝑔𝑙)) = 0)))
4443rspccva 3610 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔𝑙) ∈ 𝐴) → ((𝑔𝑙) ∈ dom vol ∧ (vol‘(𝑔𝑙)) = 0))
4544simpld 493 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔𝑙) ∈ 𝐴) → (𝑔𝑙) ∈ dom vol)
4645ancoms 457 . . . . . . . . . . . . . . . . . . 19 (((𝑔𝑙) ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑔𝑙) ∈ dom vol)
4740, 46sylan 578 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ–onto𝐴𝑙 ∈ ℕ) ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑔𝑙) ∈ dom vol)
4847an32s 648 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (𝑔𝑙) ∈ dom vol)
4948ralrimiva 3144 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ ℕ (𝑔𝑙) ∈ dom vol)
50 ssralv 4049 . . . . . . . . . . . . . . . 16 ((1...𝑚) ⊆ ℕ → (∀𝑙 ∈ ℕ (𝑔𝑙) ∈ dom vol → ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol))
5138, 49, 50mpsyl 68 . . . . . . . . . . . . . . 15 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol)
52 finiunmbl 25293 . . . . . . . . . . . . . . 15 (((1...𝑚) ∈ Fin ∧ ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol)
5335, 51, 52sylancr 585 . . . . . . . . . . . . . 14 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol)
5453adantr 479 . . . . . . . . . . . . 13 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol)
5554fmpttd 7115 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol)
56 fzssp1 13548 . . . . . . . . . . . . . . 15 (1...𝑛) ⊆ (1...(𝑛 + 1))
57 iunss1 5010 . . . . . . . . . . . . . . 15 ((1...𝑛) ⊆ (1...(𝑛 + 1)) → 𝑙 ∈ (1...𝑛)(𝑔𝑙) ⊆ 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙))
5856, 57ax-mp 5 . . . . . . . . . . . . . 14 𝑙 ∈ (1...𝑛)(𝑔𝑙) ⊆ 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙)
59 oveq2 7419 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
6059iuneq1d 5023 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙) = 𝑙 ∈ (1...𝑛)(𝑔𝑙))
61 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))
62 ovex 7444 . . . . . . . . . . . . . . . . 17 (1...𝑛) ∈ V
63 fvex 6903 . . . . . . . . . . . . . . . . 17 (𝑔𝑙) ∈ V
6462, 63iunex 7957 . . . . . . . . . . . . . . . 16 𝑙 ∈ (1...𝑛)(𝑔𝑙) ∈ V
6560, 61, 64fvmpt 6997 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) = 𝑙 ∈ (1...𝑛)(𝑔𝑙))
66 peano2nn 12228 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
67 oveq2 7419 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑛 + 1) → (1...𝑚) = (1...(𝑛 + 1)))
6867iuneq1d 5023 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 + 1) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) = 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙))
69 ovex 7444 . . . . . . . . . . . . . . . . . 18 (1...(𝑛 + 1)) ∈ V
7069, 63iunex 7957 . . . . . . . . . . . . . . . . 17 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙) ∈ V
7168, 61, 70fvmpt 6997 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℕ → ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)) = 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙))
7266, 71syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)) = 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙))
7365, 72sseq12d 4014 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)) ↔ 𝑙 ∈ (1...𝑛)(𝑔𝑙) ⊆ 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙)))
7458, 73mpbiri 257 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)))
7574rgen 3061 . . . . . . . . . . . 12 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))
76 nnex 12222 . . . . . . . . . . . . . 14 ℕ ∈ V
7776mptex 7226 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ V
78 feq1 6697 . . . . . . . . . . . . . . 15 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (𝑓:ℕ⟶dom vol ↔ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol))
79 fveq1 6889 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛))
80 fveq1 6889 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (𝑓‘(𝑛 + 1)) = ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)))
8179, 80sseq12d 4014 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ((𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1)) ↔ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))))
8281ralbidv 3175 . . . . . . . . . . . . . . 15 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1)) ↔ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))))
8378, 82anbi12d 629 . . . . . . . . . . . . . 14 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) ↔ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)))))
84 rneq 5934 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ran 𝑓 = ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
8584unieqd 4921 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ran 𝑓 = ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
8685fveq2d 6894 . . . . . . . . . . . . . . 15 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (vol‘ ran 𝑓) = (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))))
8784imaeq2d 6058 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (vol “ ran 𝑓) = (vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))))
8887supeq1d 9443 . . . . . . . . . . . . . . 15 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → sup((vol “ ran 𝑓), ℝ*, < ) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ))
8986, 88eqeq12d 2746 . . . . . . . . . . . . . 14 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ((vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < ) ↔ (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < )))
9083, 89imbi12d 343 . . . . . . . . . . . . 13 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < )) ↔ (((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))) → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ))))
91 volsupnfl.0 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < ))
9277, 90, 91vtocl 3544 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))) → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ))
9355, 75, 92sylancl 584 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ))
94 df-iun 4998 . . . . . . . . . . . . . . . 16 𝑥 ∈ ℕ (𝑔𝑥) = {𝑛 ∣ ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥)}
95 eluzfz2 13513 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ (1...𝑥))
9695, 37eleq2s 2849 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℕ → 𝑥 ∈ (1...𝑥))
97 fveq2 6890 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = 𝑥 → (𝑔𝑙) = (𝑔𝑥))
9897eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑥 → (𝑛 ∈ (𝑔𝑙) ↔ 𝑛 ∈ (𝑔𝑥)))
9998rspcev 3611 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (1...𝑥) ∧ 𝑛 ∈ (𝑔𝑥)) → ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔𝑙))
10096, 99sylan 578 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ 𝑛 ∈ (𝑔𝑥)) → ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔𝑙))
101 oveq2 7419 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑥 → (1...𝑚) = (1...𝑥))
102101rexeqdv 3324 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑥 → (∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) ↔ ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔𝑙)))
103102rspcev 3611 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔𝑙)) → ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
104100, 103syldan 589 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ 𝑛 ∈ (𝑔𝑥)) → ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
105104rexlimiva 3145 . . . . . . . . . . . . . . . . . . 19 (∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥) → ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
106 ssrexv 4050 . . . . . . . . . . . . . . . . . . . . . 22 ((1...𝑚) ⊆ ℕ → (∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) → ∃𝑙 ∈ ℕ 𝑛 ∈ (𝑔𝑙)))
10738, 106ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) → ∃𝑙 ∈ ℕ 𝑛 ∈ (𝑔𝑙))
10898cbvrexvw 3233 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑙 ∈ ℕ 𝑛 ∈ (𝑔𝑙) ↔ ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥))
109107, 108sylib 217 . . . . . . . . . . . . . . . . . . . 20 (∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) → ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥))
110109rexlimivw 3149 . . . . . . . . . . . . . . . . . . 19 (∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) → ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥))
111105, 110impbii 208 . . . . . . . . . . . . . . . . . 18 (∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥) ↔ ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
112 eliun 5000 . . . . . . . . . . . . . . . . . . 19 (𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙) ↔ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
113112rexbii 3092 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙) ↔ ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
114111, 113bitr4i 277 . . . . . . . . . . . . . . . . 17 (∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥) ↔ ∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙))
115114abbii 2800 . . . . . . . . . . . . . . . 16 {𝑛 ∣ ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥)} = {𝑛 ∣ ∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙)}
11694, 115eqtri 2758 . . . . . . . . . . . . . . 15 𝑥 ∈ ℕ (𝑔𝑥) = {𝑛 ∣ ∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙)}
117 df-iun 4998 . . . . . . . . . . . . . . 15 𝑚 ∈ ℕ 𝑙 ∈ (1...𝑚)(𝑔𝑙) = {𝑛 ∣ ∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙)}
118 ovex 7444 . . . . . . . . . . . . . . . . 17 (1...𝑚) ∈ V
119118, 63iunex 7957 . . . . . . . . . . . . . . . 16 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ V
120119dfiun3 5964 . . . . . . . . . . . . . . 15 𝑚 ∈ ℕ 𝑙 ∈ (1...𝑚)(𝑔𝑙) = ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))
121116, 117, 1203eqtr2i 2764 . . . . . . . . . . . . . 14 𝑥 ∈ ℕ (𝑔𝑥) = ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))
122 fofn 6806 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
123 fniunfv 7248 . . . . . . . . . . . . . . . 16 (𝑔 Fn ℕ → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
124122, 123syl 17 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
125 forn 6807 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto𝐴 → ran 𝑔 = 𝐴)
126125unieqd 4921 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 ran 𝑔 = 𝐴)
127124, 126eqtrd 2770 . . . . . . . . . . . . . 14 (𝑔:ℕ–onto𝐴 𝑥 ∈ ℕ (𝑔𝑥) = 𝐴)
128121, 127eqtr3id 2784 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝐴 ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 𝐴)
129128fveq2d 6894 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (vol‘ 𝐴))
130129adantr 479 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (vol‘ 𝐴))
131 rnco2 6251 . . . . . . . . . . . . . 14 ran (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
132 eqidd 2731 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
133 volf 25278 . . . . . . . . . . . . . . . . . . 19 vol:dom vol⟶(0[,]+∞)
134133a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → vol:dom vol⟶(0[,]+∞))
135134feqmptd 6959 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → vol = (𝑛 ∈ dom vol ↦ (vol‘𝑛)))
136 fveq2 6890 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑙 ∈ (1...𝑚)(𝑔𝑙) → (vol‘𝑛) = (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
13754, 132, 135, 136fmptco 7128 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (𝑚 ∈ ℕ ↦ (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙))))
138 mblvol 25279 . . . . . . . . . . . . . . . . . . . 20 ( 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol → (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
13954, 138syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
140 mblss 25280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
141140adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → 𝑥 ⊆ ℝ)
14225eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ dom vol → ((vol‘𝑥) = 0 ↔ (vol*‘𝑥) = 0))
143 0re 11220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 0 ∈ ℝ
144 eleq1a 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 ∈ ℝ → ((vol*‘𝑥) = 0 → (vol*‘𝑥) ∈ ℝ))
145143, 144ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((vol*‘𝑥) = 0 → (vol*‘𝑥) ∈ ℝ)
146142, 145syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ dom vol → ((vol‘𝑥) = 0 → (vol*‘𝑥) ∈ ℝ))
147146imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → (vol*‘𝑥) ∈ ℝ)
148141, 147jca 510 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ))
149148ralimi 3081 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ))
150149adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ))
151 ssid 4003 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℕ ⊆ ℕ
152 sseq1 4006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = (𝑔𝑙) → (𝑥 ⊆ ℝ ↔ (𝑔𝑙) ⊆ ℝ))
153 fveq2 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝑔𝑙) → (vol*‘𝑥) = (vol*‘(𝑔𝑙)))
154153eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = (𝑔𝑙) → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘(𝑔𝑙)) ∈ ℝ))
155152, 154anbi12d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝑔𝑙) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)))
156155ralima 7241 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔ ∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)))
157122, 151, 156sylancl 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔ ∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)))
158 foima 6809 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔:ℕ–onto𝐴 → (𝑔 “ ℕ) = 𝐴)
159158raleqdv 3323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
160157, 159bitr3d 280 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:ℕ–onto𝐴 → (∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
161160adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
162150, 161mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ))
163 ssralv 4049 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1...𝑚) ⊆ ℕ → (∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ) → ∀𝑙 ∈ (1...𝑚)((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)))
16438, 162, 163mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ))
165164adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ∀𝑙 ∈ (1...𝑚)((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ))
166 ovolfiniun 25250 . . . . . . . . . . . . . . . . . . . . . 22 (((1...𝑚) ∈ Fin ∧ ∀𝑙 ∈ (1...𝑚)((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)))
16735, 165, 166sylancr 585 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)))
168 mblvol 25279 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔𝑙) ∈ dom vol → (vol‘(𝑔𝑙)) = (vol*‘(𝑔𝑙)))
16948, 168syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (vol‘(𝑔𝑙)) = (vol*‘(𝑔𝑙)))
17044simprd 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔𝑙) ∈ 𝐴) → (vol‘(𝑔𝑙)) = 0)
17140, 170sylan2 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔:ℕ–onto𝐴𝑙 ∈ ℕ)) → (vol‘(𝑔𝑙)) = 0)
172171ancoms 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑔:ℕ–onto𝐴𝑙 ∈ ℕ) ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol‘(𝑔𝑙)) = 0)
173172an32s 648 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (vol‘(𝑔𝑙)) = 0)
174169, 173eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (vol*‘(𝑔𝑙)) = 0)
175174ralrimiva 3144 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ ℕ (vol*‘(𝑔𝑙)) = 0)
176 ssralv 4049 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1...𝑚) ⊆ ℕ → (∀𝑙 ∈ ℕ (vol*‘(𝑔𝑙)) = 0 → ∀𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = 0))
17738, 175, 176mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = 0)
178177adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ∀𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = 0)
179178sumeq2d 15652 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = Σ𝑙 ∈ (1...𝑚)0)
18035olci 862 . . . . . . . . . . . . . . . . . . . . . . 23 ((1...𝑚) ⊆ (ℤ‘1) ∨ (1...𝑚) ∈ Fin)
181 sumz 15672 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑚) ⊆ (ℤ‘1) ∨ (1...𝑚) ∈ Fin) → Σ𝑙 ∈ (1...𝑚)0 = 0)
182180, 181ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 Σ𝑙 ∈ (1...𝑚)0 = 0
183179, 182eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = 0)
184167, 183breqtrd 5173 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ 0)
185 mblss 25280 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔𝑙) ∈ dom vol → (𝑔𝑙) ⊆ ℝ)
186185ralimi 3081 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol → ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
18751, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
188 iunss 5047 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ ↔ ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
189187, 188sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
190189adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
191 ovolge0 25230 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ → 0 ≤ (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
192190, 191syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → 0 ≤ (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
193 ovolcl 25227 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ ℝ*)
194189, 193syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ ℝ*)
195194adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ ℝ*)
196 0xr 11265 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ*
197 xrletri3 13137 . . . . . . . . . . . . . . . . . . . . 21 (((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 0 ↔ ((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))))
198195, 196, 197sylancl 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 0 ↔ ((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))))
199184, 192, 198mpbir2and 709 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 0)
200139, 199eqtrd 2770 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 0)
201200mpteq2dva 5247 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (𝑚 ∈ ℕ ↦ 0))
202 fconstmpt 5737 . . . . . . . . . . . . . . . . 17 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
203201, 202eqtr4di 2788 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (ℕ × {0}))
204137, 203eqtrd 2770 . . . . . . . . . . . . . . 15 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (ℕ × {0}))
205 frn 6723 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol → ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ⊆ dom vol)
206 ffn 6716 . . . . . . . . . . . . . . . . . . 19 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
207133, 206ax-mp 5 . . . . . . . . . . . . . . . . . 18 vol Fn dom vol
208119, 61fnmpti 6692 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) Fn ℕ
209 fnco 6666 . . . . . . . . . . . . . . . . . 18 ((vol Fn dom vol ∧ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) Fn ℕ ∧ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ⊆ dom vol) → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) Fn ℕ)
210207, 208, 209mp3an12 1449 . . . . . . . . . . . . . . . . 17 (ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ⊆ dom vol → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) Fn ℕ)
21155, 205, 2103syl 18 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) Fn ℕ)
212 1nn 12227 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ
213212ne0ii 4336 . . . . . . . . . . . . . . . 16 ℕ ≠ ∅
214 fconst5 7208 . . . . . . . . . . . . . . . 16 (((vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) Fn ℕ ∧ ℕ ≠ ∅) → ((vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (ℕ × {0}) ↔ ran (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = {0}))
215211, 213, 214sylancl 584 . . . . . . . . . . . . . . 15 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ((vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (ℕ × {0}) ↔ ran (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = {0}))
216204, 215mpbid 231 . . . . . . . . . . . . . 14 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ran (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = {0})
217131, 216eqtr3id 2784 . . . . . . . . . . . . 13 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = {0})
218217supeq1d 9443 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ) = sup({0}, ℝ*, < ))
219 xrltso 13124 . . . . . . . . . . . . 13 < Or ℝ*
220 supsn 9469 . . . . . . . . . . . . 13 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
221219, 196, 220mp2an 688 . . . . . . . . . . . 12 sup({0}, ℝ*, < ) = 0
222218, 221eqtrdi 2786 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ) = 0)
22393, 130, 2223eqtr3rd 2779 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → 0 = (vol‘ 𝐴))
224223ex 411 . . . . . . . . 9 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → 0 = (vol‘ 𝐴)))
22534, 224syl5 34 . . . . . . . 8 (𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
226225exlimiv 1931 . . . . . . 7 (∃𝑔 𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
22718, 226syl 17 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
228227expimpd 452 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
22911, 228pm2.61ine 3023 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴))
230 renepnf 11266 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
231143, 230mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
232 fveq2 6890 . . . . . . 7 ( 𝐴 = ℝ → (vol‘ 𝐴) = (vol‘ℝ))
233 rembl 25289 . . . . . . . . 9 ℝ ∈ dom vol
234 mblvol 25279 . . . . . . . . 9 (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ))
235233, 234ax-mp 5 . . . . . . . 8 (vol‘ℝ) = (vol*‘ℝ)
236 ovolre 25274 . . . . . . . 8 (vol*‘ℝ) = +∞
237235, 236eqtri 2758 . . . . . . 7 (vol‘ℝ) = +∞
238232, 237eqtrdi 2786 . . . . . 6 ( 𝐴 = ℝ → (vol‘ 𝐴) = +∞)
239231, 238neeqtrrd 3013 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol‘ 𝐴))
240239necon2i 2973 . . . 4 (0 = (vol‘ 𝐴) → 𝐴 ≠ ℝ)
241229, 240syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
242241expr 455 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
243 eqimss 4039 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
244243necon3bi 2965 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
245242, 244pm2.61d1 180 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 843   = wceq 1539  wex 1779  wcel 2104  {cab 2707  wne 2938  wral 3059  wrex 3068  Vcvv 3472  wss 3947  c0 4321  {csn 4627   cuni 4907   ciun 4996   class class class wbr 5147  cmpt 5230   Or wor 5586   × cxp 5673  dom cdm 5675  ran crn 5676  cima 5678  ccom 5679   Fn wfn 6537  wf 6538  ontowfo 6540  cfv 6542  (class class class)co 7411  cdom 8939  csdm 8940  Fincfn 8941  supcsup 9437  cr 11111  0cc0 11112  1c1 11113   + caddc 11115  +∞cpnf 11249  *cxr 11251   < clt 11252  cle 11253  cn 12216  cuz 12826  [,]cicc 13331  ...cfz 13488  Σcsu 15636  vol*covol 25211  volcvol 25212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-sum 15637  df-rest 17372  df-topgen 17393  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-top 22616  df-topon 22633  df-bases 22669  df-cmp 23111  df-ovol 25213  df-vol 25214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator