Step | Hyp | Ref
| Expression |
1 | | unieq 4847 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → ∪ 𝐴 =
∪ ∅) |
2 | | uni0 4866 |
. . . . . . . . 9
⊢ ∪ ∅ = ∅ |
3 | 1, 2 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝐴 = ∅ → ∪ 𝐴 =
∅) |
4 | 3 | fveq2d 6760 |
. . . . . . 7
⊢ (𝐴 = ∅ →
(vol‘∪ 𝐴) = (vol‘∅)) |
5 | | 0mbl 24608 |
. . . . . . . . 9
⊢ ∅
∈ dom vol |
6 | | mblvol 24599 |
. . . . . . . . 9
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
7 | 5, 6 | ax-mp 5 |
. . . . . . . 8
⊢
(vol‘∅) = (vol*‘∅) |
8 | | ovol0 24562 |
. . . . . . . 8
⊢
(vol*‘∅) = 0 |
9 | 7, 8 | eqtri 2766 |
. . . . . . 7
⊢
(vol‘∅) = 0 |
10 | 4, 9 | eqtr2di 2796 |
. . . . . 6
⊢ (𝐴 = ∅ → 0 =
(vol‘∪ 𝐴)) |
11 | 10 | a1d 25 |
. . . . 5
⊢ (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧
(∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴
⊆ ℝ)) → 0 = (vol‘∪ 𝐴))) |
12 | | reldom 8697 |
. . . . . . . . . . 11
⊢ Rel
≼ |
13 | 12 | brrelex1i 5634 |
. . . . . . . . . 10
⊢ (𝐴 ≼ ℕ → 𝐴 ∈ V) |
14 | | 0sdomg 8842 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (∅
≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ≼ ℕ → (∅
≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
16 | 15 | biimparc 479 |
. . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅
≺ 𝐴) |
17 | | fodomr 8864 |
. . . . . . . 8
⊢ ((∅
≺ 𝐴 ∧ 𝐴 ≼ ℕ) →
∃𝑔 𝑔:ℕ–onto→𝐴) |
18 | 16, 17 | sylancom 587 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) →
∃𝑔 𝑔:ℕ–onto→𝐴) |
19 | | unissb 4870 |
. . . . . . . . . . . . 13
⊢ (∪ 𝐴
⊆ ℝ ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ℝ) |
20 | 19 | anbi1i 623 |
. . . . . . . . . . . 12
⊢ ((∪ 𝐴
⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ)) |
21 | | r19.26 3094 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥 ∈ 𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ)) |
22 | 20, 21 | bitr4i 277 |
. . . . . . . . . . 11
⊢ ((∪ 𝐴
⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ)) |
23 | | ovolctb2 24561 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) →
(vol*‘𝑥) =
0) |
24 | | nulmbl 24604 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) = 0) →
𝑥 ∈ dom
vol) |
25 | | mblvol 24599 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ dom vol →
(vol‘𝑥) =
(vol*‘𝑥)) |
26 | | eqtr 2761 |
. . . . . . . . . . . . . . . . 17
⊢
(((vol‘𝑥) =
(vol*‘𝑥) ∧
(vol*‘𝑥) = 0) →
(vol‘𝑥) =
0) |
27 | 26 | expcom 413 |
. . . . . . . . . . . . . . . 16
⊢
((vol*‘𝑥) = 0
→ ((vol‘𝑥) =
(vol*‘𝑥) →
(vol‘𝑥) =
0)) |
28 | 25, 27 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢
((vol*‘𝑥) = 0
→ (𝑥 ∈ dom vol
→ (vol‘𝑥) =
0)) |
29 | 28 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) = 0) →
(𝑥 ∈ dom vol →
(vol‘𝑥) =
0)) |
30 | 24, 29 | jcai 516 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) = 0) →
(𝑥 ∈ dom vol ∧
(vol‘𝑥) =
0)) |
31 | 23, 30 | syldan 590 |
. . . . . . . . . . . 12
⊢ ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ∈ dom vol ∧
(vol‘𝑥) =
0)) |
32 | 31 | ralimi 3086 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) |
33 | 22, 32 | sylbi 216 |
. . . . . . . . . 10
⊢ ((∪ 𝐴
⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) |
34 | 33 | ancoms 458 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴
⊆ ℝ) → ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) |
35 | | fzfi 13620 |
. . . . . . . . . . . . . . 15
⊢
(1...𝑚) ∈
Fin |
36 | | fzssuz 13226 |
. . . . . . . . . . . . . . . . 17
⊢
(1...𝑚) ⊆
(ℤ≥‘1) |
37 | | nnuz 12550 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) |
38 | 36, 37 | sseqtrri 3954 |
. . . . . . . . . . . . . . . 16
⊢
(1...𝑚) ⊆
ℕ |
39 | | fof 6672 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔:ℕ–onto→𝐴 → 𝑔:ℕ⟶𝐴) |
40 | 39 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔:ℕ–onto→𝐴 ∧ 𝑙 ∈ ℕ) → (𝑔‘𝑙) ∈ 𝐴) |
41 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = (𝑔‘𝑙) → (𝑥 ∈ dom vol ↔ (𝑔‘𝑙) ∈ dom vol)) |
42 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = (𝑔‘𝑙) → ((vol‘𝑥) = 0 ↔ (vol‘(𝑔‘𝑙)) = 0)) |
43 | 41, 42 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = (𝑔‘𝑙) → ((𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ↔ ((𝑔‘𝑙) ∈ dom vol ∧ (vol‘(𝑔‘𝑙)) = 0))) |
44 | 43 | rspccva 3551 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∀𝑥 ∈
𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔‘𝑙) ∈ 𝐴) → ((𝑔‘𝑙) ∈ dom vol ∧ (vol‘(𝑔‘𝑙)) = 0)) |
45 | 44 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑥 ∈
𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔‘𝑙) ∈ 𝐴) → (𝑔‘𝑙) ∈ dom vol) |
46 | 45 | ancoms 458 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔‘𝑙) ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑔‘𝑙) ∈ dom vol) |
47 | 40, 46 | sylan 579 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:ℕ–onto→𝐴 ∧ 𝑙 ∈ ℕ) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑔‘𝑙) ∈ dom vol) |
48 | 47 | an32s 648 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (𝑔‘𝑙) ∈ dom vol) |
49 | 48 | ralrimiva 3107 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ ℕ (𝑔‘𝑙) ∈ dom vol) |
50 | | ssralv 3983 |
. . . . . . . . . . . . . . . 16
⊢
((1...𝑚) ⊆
ℕ → (∀𝑙
∈ ℕ (𝑔‘𝑙) ∈ dom vol → ∀𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ∈ dom vol)) |
51 | 38, 49, 50 | mpsyl 68 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ∈ dom vol) |
52 | | finiunmbl 24613 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑚) ∈ Fin
∧ ∀𝑙 ∈
(1...𝑚)(𝑔‘𝑙) ∈ dom vol) → ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ∈ dom vol) |
53 | 35, 51, 52 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ∈ dom vol) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ∈ dom vol) |
55 | 54 | fmpttd 6971 |
. . . . . . . . . . . 12
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)):ℕ⟶dom vol) |
56 | | fzssp1 13228 |
. . . . . . . . . . . . . . 15
⊢
(1...𝑛) ⊆
(1...(𝑛 +
1)) |
57 | | iunss1 4935 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑛) ⊆
(1...(𝑛 + 1)) →
∪ 𝑙 ∈ (1...𝑛)(𝑔‘𝑙) ⊆ ∪
𝑙 ∈ (1...(𝑛 + 1))(𝑔‘𝑙)) |
58 | 56, 57 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑙 ∈ (1...𝑛)(𝑔‘𝑙) ⊆ ∪
𝑙 ∈ (1...(𝑛 + 1))(𝑔‘𝑙) |
59 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛)) |
60 | 59 | iuneq1d 4948 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → ∪
𝑙 ∈ (1...𝑚)(𝑔‘𝑙) = ∪ 𝑙 ∈ (1...𝑛)(𝑔‘𝑙)) |
61 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) |
62 | | ovex 7288 |
. . . . . . . . . . . . . . . . 17
⊢
(1...𝑛) ∈
V |
63 | | fvex 6769 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔‘𝑙) ∈ V |
64 | 62, 63 | iunex 7784 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑙 ∈ (1...𝑛)(𝑔‘𝑙) ∈ V |
65 | 60, 61, 64 | fvmpt 6857 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛) = ∪ 𝑙 ∈ (1...𝑛)(𝑔‘𝑙)) |
66 | | peano2nn 11915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
67 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = (𝑛 + 1) → (1...𝑚) = (1...(𝑛 + 1))) |
68 | 67 | iuneq1d 4948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑛 + 1) → ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) = ∪ 𝑙 ∈ (1...(𝑛 + 1))(𝑔‘𝑙)) |
69 | | ovex 7288 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...(𝑛 + 1)) ∈
V |
70 | 69, 63 | iunex 7784 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑙 ∈ (1...(𝑛 + 1))(𝑔‘𝑙) ∈ V |
71 | 68, 61, 70 | fvmpt 6857 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 + 1) ∈ ℕ →
((𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1)) = ∪
𝑙 ∈ (1...(𝑛 + 1))(𝑔‘𝑙)) |
72 | 66, 71 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1)) = ∪
𝑙 ∈ (1...(𝑛 + 1))(𝑔‘𝑙)) |
73 | 65, 72 | sseq12d 3950 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1)) ↔ ∪ 𝑙 ∈ (1...𝑛)(𝑔‘𝑙) ⊆ ∪
𝑙 ∈ (1...(𝑛 + 1))(𝑔‘𝑙))) |
74 | 58, 73 | mpbiri 257 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1))) |
75 | 74 | rgen 3073 |
. . . . . . . . . . . 12
⊢
∀𝑛 ∈
ℕ ((𝑚 ∈ ℕ
↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1)) |
76 | | nnex 11909 |
. . . . . . . . . . . . . 14
⊢ ℕ
∈ V |
77 | 76 | mptex 7081 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ∈ V |
78 | | feq1 6565 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → (𝑓:ℕ⟶dom vol ↔ (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)):ℕ⟶dom vol)) |
79 | | fveq1 6755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → (𝑓‘𝑛) = ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛)) |
80 | | fveq1 6755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → (𝑓‘(𝑛 + 1)) = ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1))) |
81 | 79, 80 | sseq12d 3950 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → ((𝑓‘𝑛) ⊆ (𝑓‘(𝑛 + 1)) ↔ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1)))) |
82 | 81 | ralbidv 3120 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → (∀𝑛 ∈ ℕ (𝑓‘𝑛) ⊆ (𝑓‘(𝑛 + 1)) ↔ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1)))) |
83 | 78, 82 | anbi12d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → ((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ⊆ (𝑓‘(𝑛 + 1))) ↔ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1))))) |
84 | | rneq 5834 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → ran 𝑓 = ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) |
85 | 84 | unieqd 4850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → ∪ ran
𝑓 = ∪ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) |
86 | 85 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → (vol‘∪ ran 𝑓) = (vol‘∪
ran (𝑚 ∈ ℕ
↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)))) |
87 | 84 | imaeq2d 5958 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → (vol “ ran 𝑓) = (vol “ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)))) |
88 | 87 | supeq1d 9135 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → sup((vol “ ran 𝑓), ℝ*, < ) =
sup((vol “ ran (𝑚
∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))), ℝ*, <
)) |
89 | 86, 88 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → ((vol‘∪ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < ) ↔
(vol‘∪ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))), ℝ*, <
))) |
90 | 83, 89 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) → (((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓‘𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘∪ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < )) ↔
(((𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1))) → (vol‘∪ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))), ℝ*, <
)))) |
91 | | volsupnfl.0 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ℕ⟶dom vol ∧
∀𝑛 ∈ ℕ
(𝑓‘𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘∪ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, <
)) |
92 | 77, 90, 91 | vtocl 3488 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))‘(𝑛 + 1))) → (vol‘∪ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))), ℝ*, <
)) |
93 | 55, 75, 92 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol‘∪ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))), ℝ*, <
)) |
94 | | df-iun 4923 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑥 ∈ ℕ (𝑔‘𝑥) = {𝑛 ∣ ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔‘𝑥)} |
95 | | eluzfz2 13193 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈
(ℤ≥‘1) → 𝑥 ∈ (1...𝑥)) |
96 | 95, 37 | eleq2s 2857 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℕ → 𝑥 ∈ (1...𝑥)) |
97 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 = 𝑥 → (𝑔‘𝑙) = (𝑔‘𝑥)) |
98 | 97 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 = 𝑥 → (𝑛 ∈ (𝑔‘𝑙) ↔ 𝑛 ∈ (𝑔‘𝑥))) |
99 | 98 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ (1...𝑥) ∧ 𝑛 ∈ (𝑔‘𝑥)) → ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔‘𝑙)) |
100 | 96, 99 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℕ ∧ 𝑛 ∈ (𝑔‘𝑥)) → ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔‘𝑙)) |
101 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑥 → (1...𝑚) = (1...𝑥)) |
102 | 101 | rexeqdv 3340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑥 → (∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔‘𝑙) ↔ ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔‘𝑙))) |
103 | 102 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℕ ∧
∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔‘𝑙)) → ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔‘𝑙)) |
104 | 100, 103 | syldan 590 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℕ ∧ 𝑛 ∈ (𝑔‘𝑥)) → ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔‘𝑙)) |
105 | 104 | rexlimiva 3209 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑥 ∈
ℕ 𝑛 ∈ (𝑔‘𝑥) → ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔‘𝑙)) |
106 | | ssrexv 3984 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1...𝑚) ⊆
ℕ → (∃𝑙
∈ (1...𝑚)𝑛 ∈ (𝑔‘𝑙) → ∃𝑙 ∈ ℕ 𝑛 ∈ (𝑔‘𝑙))) |
107 | 38, 106 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑙 ∈
(1...𝑚)𝑛 ∈ (𝑔‘𝑙) → ∃𝑙 ∈ ℕ 𝑛 ∈ (𝑔‘𝑙)) |
108 | 98 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑙 ∈
ℕ 𝑛 ∈ (𝑔‘𝑙) ↔ ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔‘𝑥)) |
109 | 107, 108 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑙 ∈
(1...𝑚)𝑛 ∈ (𝑔‘𝑙) → ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔‘𝑥)) |
110 | 109 | rexlimivw 3210 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑚 ∈
ℕ ∃𝑙 ∈
(1...𝑚)𝑛 ∈ (𝑔‘𝑙) → ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔‘𝑥)) |
111 | 105, 110 | impbii 208 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑥 ∈
ℕ 𝑛 ∈ (𝑔‘𝑥) ↔ ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔‘𝑙)) |
112 | | eliun 4925 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ↔ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔‘𝑙)) |
113 | 112 | rexbii 3177 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑚 ∈
ℕ 𝑛 ∈ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ↔ ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔‘𝑙)) |
114 | 111, 113 | bitr4i 277 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑥 ∈
ℕ 𝑛 ∈ (𝑔‘𝑥) ↔ ∃𝑚 ∈ ℕ 𝑛 ∈ ∪
𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) |
115 | 114 | abbii 2809 |
. . . . . . . . . . . . . . . 16
⊢ {𝑛 ∣ ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔‘𝑥)} = {𝑛 ∣ ∃𝑚 ∈ ℕ 𝑛 ∈ ∪
𝑙 ∈ (1...𝑚)(𝑔‘𝑙)} |
116 | 94, 115 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑥 ∈ ℕ (𝑔‘𝑥) = {𝑛 ∣ ∃𝑚 ∈ ℕ 𝑛 ∈ ∪
𝑙 ∈ (1...𝑚)(𝑔‘𝑙)} |
117 | | df-iun 4923 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑚 ∈ ℕ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) = {𝑛 ∣ ∃𝑚 ∈ ℕ 𝑛 ∈ ∪
𝑙 ∈ (1...𝑚)(𝑔‘𝑙)} |
118 | | ovex 7288 |
. . . . . . . . . . . . . . . . 17
⊢
(1...𝑚) ∈
V |
119 | 118, 63 | iunex 7784 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ∈ V |
120 | 119 | dfiun3 5864 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑚 ∈ ℕ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) = ∪ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) |
121 | 116, 117,
120 | 3eqtr2i 2772 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑥 ∈ ℕ (𝑔‘𝑥) = ∪ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) |
122 | | fofn 6674 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:ℕ–onto→𝐴 → 𝑔 Fn ℕ) |
123 | | fniunfv 7102 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 Fn ℕ → ∪ 𝑥 ∈ ℕ (𝑔‘𝑥) = ∪ ran 𝑔) |
124 | 122, 123 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:ℕ–onto→𝐴 → ∪
𝑥 ∈ ℕ (𝑔‘𝑥) = ∪ ran 𝑔) |
125 | | forn 6675 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:ℕ–onto→𝐴 → ran 𝑔 = 𝐴) |
126 | 125 | unieqd 4850 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:ℕ–onto→𝐴 → ∪ ran
𝑔 = ∪ 𝐴) |
127 | 124, 126 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝑔:ℕ–onto→𝐴 → ∪
𝑥 ∈ ℕ (𝑔‘𝑥) = ∪ 𝐴) |
128 | 121, 127 | eqtr3id 2793 |
. . . . . . . . . . . . 13
⊢ (𝑔:ℕ–onto→𝐴 → ∪ ran
(𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) = ∪ 𝐴) |
129 | 128 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑔:ℕ–onto→𝐴 → (vol‘∪ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = (vol‘∪
𝐴)) |
130 | 129 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol‘∪ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = (vol‘∪
𝐴)) |
131 | | rnco2 6146 |
. . . . . . . . . . . . . 14
⊢ ran (vol
∘ (𝑚 ∈ ℕ
↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = (vol “ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) |
132 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) = (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) |
133 | | volf 24598 |
. . . . . . . . . . . . . . . . . . 19
⊢ vol:dom
vol⟶(0[,]+∞) |
134 | 133 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → vol:dom
vol⟶(0[,]+∞)) |
135 | 134 | feqmptd 6819 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → vol = (𝑛 ∈ dom vol ↦
(vol‘𝑛))) |
136 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) → (vol‘𝑛) = (vol‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) |
137 | 54, 132, 135, 136 | fmptco 6983 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol ∘
(𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = (𝑚 ∈ ℕ ↦ (vol‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)))) |
138 | | mblvol 24599 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ∈ dom vol → (vol‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) = (vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) |
139 | 54, 138 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) = (vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) |
140 | | mblss 24600 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 ∈ dom vol → 𝑥 ⊆
ℝ) |
141 | 140 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ dom vol ∧
(vol‘𝑥) = 0) →
𝑥 ⊆
ℝ) |
142 | 25 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ∈ dom vol →
((vol‘𝑥) = 0 ↔
(vol*‘𝑥) =
0)) |
143 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 0 ∈
ℝ |
144 | | eleq1a 2834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (0 ∈
ℝ → ((vol*‘𝑥) = 0 → (vol*‘𝑥) ∈ ℝ)) |
145 | 143, 144 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((vol*‘𝑥) = 0
→ (vol*‘𝑥)
∈ ℝ) |
146 | 142, 145 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 ∈ dom vol →
((vol‘𝑥) = 0 →
(vol*‘𝑥) ∈
ℝ)) |
147 | 146 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ dom vol ∧
(vol‘𝑥) = 0) →
(vol*‘𝑥) ∈
ℝ) |
148 | 141, 147 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ dom vol ∧
(vol‘𝑥) = 0) →
(𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) |
149 | 148 | ralimi 3086 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∀𝑥 ∈
𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → ∀𝑥 ∈ 𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈
ℝ)) |
150 | 149 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑥 ∈ 𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈
ℝ)) |
151 | | ssid 3939 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ℕ
⊆ ℕ |
152 | | sseq1 3942 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = (𝑔‘𝑙) → (𝑥 ⊆ ℝ ↔ (𝑔‘𝑙) ⊆ ℝ)) |
153 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = (𝑔‘𝑙) → (vol*‘𝑥) = (vol*‘(𝑔‘𝑙))) |
154 | 153 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = (𝑔‘𝑙) → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘(𝑔‘𝑙)) ∈ ℝ)) |
155 | 152, 154 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = (𝑔‘𝑙) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔ ((𝑔‘𝑙) ⊆ ℝ ∧ (vol*‘(𝑔‘𝑙)) ∈ ℝ))) |
156 | 155 | ralima 7096 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 Fn ℕ ∧ ℕ
⊆ ℕ) → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔
∀𝑙 ∈ ℕ
((𝑔‘𝑙) ⊆ ℝ ∧
(vol*‘(𝑔‘𝑙)) ∈
ℝ))) |
157 | 122, 151,
156 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔:ℕ–onto→𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔
∀𝑙 ∈ ℕ
((𝑔‘𝑙) ⊆ ℝ ∧
(vol*‘(𝑔‘𝑙)) ∈
ℝ))) |
158 | | foima 6677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑔:ℕ–onto→𝐴 → (𝑔 “ ℕ) = 𝐴) |
159 | 158 | raleqdv 3339 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔:ℕ–onto→𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔
∀𝑥 ∈ 𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈
ℝ))) |
160 | 157, 159 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔:ℕ–onto→𝐴 → (∀𝑙 ∈ ℕ ((𝑔‘𝑙) ⊆ ℝ ∧ (vol*‘(𝑔‘𝑙)) ∈ ℝ) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈
ℝ))) |
161 | 160 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (∀𝑙 ∈ ℕ ((𝑔‘𝑙) ⊆ ℝ ∧ (vol*‘(𝑔‘𝑙)) ∈ ℝ) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈
ℝ))) |
162 | 150, 161 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ ℕ ((𝑔‘𝑙) ⊆ ℝ ∧ (vol*‘(𝑔‘𝑙)) ∈ ℝ)) |
163 | | ssralv 3983 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1...𝑚) ⊆
ℕ → (∀𝑙
∈ ℕ ((𝑔‘𝑙) ⊆ ℝ ∧ (vol*‘(𝑔‘𝑙)) ∈ ℝ) → ∀𝑙 ∈ (1...𝑚)((𝑔‘𝑙) ⊆ ℝ ∧ (vol*‘(𝑔‘𝑙)) ∈ ℝ))) |
164 | 38, 162, 163 | mpsyl 68 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)((𝑔‘𝑙) ⊆ ℝ ∧ (vol*‘(𝑔‘𝑙)) ∈ ℝ)) |
165 | 164 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ∀𝑙 ∈ (1...𝑚)((𝑔‘𝑙) ⊆ ℝ ∧ (vol*‘(𝑔‘𝑙)) ∈ ℝ)) |
166 | | ovolfiniun 24570 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((1...𝑚) ∈ Fin
∧ ∀𝑙 ∈
(1...𝑚)((𝑔‘𝑙) ⊆ ℝ ∧ (vol*‘(𝑔‘𝑙)) ∈ ℝ)) →
(vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ≤ Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔‘𝑙))) |
167 | 35, 165, 166 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ≤ Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔‘𝑙))) |
168 | | mblvol 24599 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔‘𝑙) ∈ dom vol → (vol‘(𝑔‘𝑙)) = (vol*‘(𝑔‘𝑙))) |
169 | 48, 168 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (vol‘(𝑔‘𝑙)) = (vol*‘(𝑔‘𝑙))) |
170 | 44 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((∀𝑥 ∈
𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔‘𝑙) ∈ 𝐴) → (vol‘(𝑔‘𝑙)) = 0) |
171 | 40, 170 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((∀𝑥 ∈
𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔:ℕ–onto→𝐴 ∧ 𝑙 ∈ ℕ)) → (vol‘(𝑔‘𝑙)) = 0) |
172 | 171 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑔:ℕ–onto→𝐴 ∧ 𝑙 ∈ ℕ) ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol‘(𝑔‘𝑙)) = 0) |
173 | 172 | an32s 648 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (vol‘(𝑔‘𝑙)) = 0) |
174 | 169, 173 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (vol*‘(𝑔‘𝑙)) = 0) |
175 | 174 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ ℕ
(vol*‘(𝑔‘𝑙)) = 0) |
176 | | ssralv 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((1...𝑚) ⊆
ℕ → (∀𝑙
∈ ℕ (vol*‘(𝑔‘𝑙)) = 0 → ∀𝑙 ∈ (1...𝑚)(vol*‘(𝑔‘𝑙)) = 0)) |
177 | 38, 175, 176 | mpsyl 68 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)(vol*‘(𝑔‘𝑙)) = 0) |
178 | 177 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ∀𝑙 ∈ (1...𝑚)(vol*‘(𝑔‘𝑙)) = 0) |
179 | 178 | sumeq2d 15342 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔‘𝑙)) = Σ𝑙 ∈ (1...𝑚)0) |
180 | 35 | olci 862 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1...𝑚) ⊆
(ℤ≥‘1) ∨ (1...𝑚) ∈ Fin) |
181 | | sumz 15362 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...𝑚) ⊆
(ℤ≥‘1) ∨ (1...𝑚) ∈ Fin) → Σ𝑙 ∈ (1...𝑚)0 = 0) |
182 | 180, 181 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Σ𝑙 ∈
(1...𝑚)0 =
0 |
183 | 179, 182 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔‘𝑙)) = 0) |
184 | 167, 183 | breqtrd 5096 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ≤ 0) |
185 | | mblss 24600 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘𝑙) ∈ dom vol → (𝑔‘𝑙) ⊆ ℝ) |
186 | 185 | ralimi 3086 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑙 ∈
(1...𝑚)(𝑔‘𝑙) ∈ dom vol → ∀𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ⊆ ℝ) |
187 | 51, 186 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ⊆ ℝ) |
188 | | iunss 4971 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ⊆ ℝ ↔ ∀𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ⊆ ℝ) |
189 | 187, 188 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ⊆ ℝ) |
190 | 189 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ⊆ ℝ) |
191 | | ovolge0 24550 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ⊆ ℝ → 0 ≤
(vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) |
192 | 190, 191 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → 0 ≤
(vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) |
193 | | ovolcl 24547 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙) ⊆ ℝ → (vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ∈
ℝ*) |
194 | 189, 193 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) →
(vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ∈
ℝ*) |
195 | 194 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ∈
ℝ*) |
196 | | 0xr 10953 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℝ* |
197 | | xrletri3 12817 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ∈ ℝ* ∧ 0 ∈
ℝ*) → ((vol*‘∪
𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) = 0 ↔ ((vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ≤ 0 ∧ 0 ≤ (vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))))) |
198 | 195, 196,
197 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ((vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) = 0 ↔ ((vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ≤ 0 ∧ 0 ≤ (vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))))) |
199 | 184, 192,
198 | mpbir2and 709 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) = 0) |
200 | 139, 199 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) = 0) |
201 | 200 | mpteq2dva 5170 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦
(vol‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = (𝑚 ∈ ℕ ↦ 0)) |
202 | | fconstmpt 5640 |
. . . . . . . . . . . . . . . . 17
⊢ (ℕ
× {0}) = (𝑚 ∈
ℕ ↦ 0) |
203 | 201, 202 | eqtr4di 2797 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦
(vol‘∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = (ℕ × {0})) |
204 | 137, 203 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol ∘
(𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = (ℕ × {0})) |
205 | | frn 6591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)):ℕ⟶dom vol → ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ⊆ dom vol) |
206 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (vol:dom
vol⟶(0[,]+∞) → vol Fn dom vol) |
207 | 133, 206 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ vol Fn
dom vol |
208 | 119, 61 | fnmpti 6560 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) Fn ℕ |
209 | | fnco 6533 |
. . . . . . . . . . . . . . . . . 18
⊢ ((vol Fn
dom vol ∧ (𝑚 ∈
ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) Fn ℕ ∧ ran (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ⊆ dom vol) → (vol ∘
(𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) Fn ℕ) |
210 | 207, 208,
209 | mp3an12 1449 |
. . . . . . . . . . . . . . . . 17
⊢ (ran
(𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙)) ⊆ dom vol → (vol ∘ (𝑚 ∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) Fn ℕ) |
211 | 55, 205, 210 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol ∘
(𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) Fn ℕ) |
212 | | 1nn 11914 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ |
213 | 212 | ne0ii 4268 |
. . . . . . . . . . . . . . . 16
⊢ ℕ
≠ ∅ |
214 | | fconst5 7063 |
. . . . . . . . . . . . . . . 16
⊢ (((vol
∘ (𝑚 ∈ ℕ
↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) Fn ℕ ∧ ℕ ≠ ∅)
→ ((vol ∘ (𝑚
∈ ℕ ↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = (ℕ × {0}) ↔ ran (vol
∘ (𝑚 ∈ ℕ
↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = {0})) |
215 | 211, 213,
214 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ((vol ∘
(𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = (ℕ × {0}) ↔ ran (vol
∘ (𝑚 ∈ ℕ
↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = {0})) |
216 | 204, 215 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ran (vol ∘
(𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = {0}) |
217 | 131, 216 | eqtr3id 2793 |
. . . . . . . . . . . . 13
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol “ ran
(𝑚 ∈ ℕ ↦
∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))) = {0}) |
218 | 217 | supeq1d 9135 |
. . . . . . . . . . . 12
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → sup((vol “
ran (𝑚 ∈ ℕ
↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))), ℝ*, < ) = sup({0},
ℝ*, < )) |
219 | | xrltso 12804 |
. . . . . . . . . . . . 13
⊢ < Or
ℝ* |
220 | | supsn 9161 |
. . . . . . . . . . . . 13
⊢ (( <
Or ℝ* ∧ 0 ∈ ℝ*) → sup({0},
ℝ*, < ) = 0) |
221 | 219, 196,
220 | mp2an 688 |
. . . . . . . . . . . 12
⊢ sup({0},
ℝ*, < ) = 0 |
222 | 218, 221 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → sup((vol “
ran (𝑚 ∈ ℕ
↦ ∪ 𝑙 ∈ (1...𝑚)(𝑔‘𝑙))), ℝ*, < ) =
0) |
223 | 93, 130, 222 | 3eqtr3rd 2787 |
. . . . . . . . . 10
⊢ ((𝑔:ℕ–onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → 0 =
(vol‘∪ 𝐴)) |
224 | 223 | ex 412 |
. . . . . . . . 9
⊢ (𝑔:ℕ–onto→𝐴 → (∀𝑥 ∈ 𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → 0 =
(vol‘∪ 𝐴))) |
225 | 34, 224 | syl5 34 |
. . . . . . . 8
⊢ (𝑔:ℕ–onto→𝐴 → ((∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴
⊆ ℝ) → 0 = (vol‘∪ 𝐴))) |
226 | 225 | exlimiv 1934 |
. . . . . . 7
⊢
(∃𝑔 𝑔:ℕ–onto→𝐴 → ((∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴
⊆ ℝ) → 0 = (vol‘∪ 𝐴))) |
227 | 18, 226 | syl 17 |
. . . . . 6
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) →
((∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴
⊆ ℝ) → 0 = (vol‘∪ 𝐴))) |
228 | 227 | expimpd 453 |
. . . . 5
⊢ (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧
(∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴
⊆ ℝ)) → 0 = (vol‘∪ 𝐴))) |
229 | 11, 228 | pm2.61ine 3027 |
. . . 4
⊢ ((𝐴 ≼ ℕ ∧
(∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴
⊆ ℝ)) → 0 = (vol‘∪ 𝐴)) |
230 | | renepnf 10954 |
. . . . . . 7
⊢ (0 ∈
ℝ → 0 ≠ +∞) |
231 | 143, 230 | mp1i 13 |
. . . . . 6
⊢ (∪ 𝐴 =
ℝ → 0 ≠ +∞) |
232 | | fveq2 6756 |
. . . . . . 7
⊢ (∪ 𝐴 =
ℝ → (vol‘∪ 𝐴) = (vol‘ℝ)) |
233 | | rembl 24609 |
. . . . . . . . 9
⊢ ℝ
∈ dom vol |
234 | | mblvol 24599 |
. . . . . . . . 9
⊢ (ℝ
∈ dom vol → (vol‘ℝ) =
(vol*‘ℝ)) |
235 | 233, 234 | ax-mp 5 |
. . . . . . . 8
⊢
(vol‘ℝ) = (vol*‘ℝ) |
236 | | ovolre 24594 |
. . . . . . . 8
⊢
(vol*‘ℝ) = +∞ |
237 | 235, 236 | eqtri 2766 |
. . . . . . 7
⊢
(vol‘ℝ) = +∞ |
238 | 232, 237 | eqtrdi 2795 |
. . . . . 6
⊢ (∪ 𝐴 =
ℝ → (vol‘∪ 𝐴) = +∞) |
239 | 231, 238 | neeqtrrd 3017 |
. . . . 5
⊢ (∪ 𝐴 =
ℝ → 0 ≠ (vol‘∪ 𝐴)) |
240 | 239 | necon2i 2977 |
. . . 4
⊢ (0 =
(vol‘∪ 𝐴) → ∪ 𝐴 ≠ ℝ) |
241 | 229, 240 | syl 17 |
. . 3
⊢ ((𝐴 ≼ ℕ ∧
(∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ ∧ ∪ 𝐴
⊆ ℝ)) → ∪ 𝐴 ≠ ℝ) |
242 | 241 | expr 456 |
. 2
⊢ ((𝐴 ≼ ℕ ∧
∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → (∪ 𝐴
⊆ ℝ → ∪ 𝐴 ≠ ℝ)) |
243 | | eqimss 3973 |
. . 3
⊢ (∪ 𝐴 =
ℝ → ∪ 𝐴 ⊆ ℝ) |
244 | 243 | necon3bi 2969 |
. 2
⊢ (¬
∪ 𝐴 ⊆ ℝ → ∪ 𝐴
≠ ℝ) |
245 | 242, 244 | pm2.61d1 180 |
1
⊢ ((𝐴 ≼ ℕ ∧
∀𝑥 ∈ 𝐴 𝑥 ≼ ℕ) → ∪ 𝐴
≠ ℝ) |