Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovoliunnfl Structured version   Visualization version   GIF version

Theorem ovoliunnfl 37648
Description: ovoliun 25553 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.)
Hypothesis
Ref Expression
ovoliunnfl.0 ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
Assertion
Ref Expression
ovoliunnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑚,𝑥,𝐴

Proof of Theorem ovoliunnfl
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 unieq 4922 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4939 . . . . . . . . 9 ∅ = ∅
31, 2eqtrdi 2790 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6910 . . . . . . 7 (𝐴 = ∅ → (vol*‘ 𝐴) = (vol*‘∅))
5 ovol0 25541 . . . . . . 7 (vol*‘∅) = 0
64, 5eqtr2di 2791 . . . . . 6 (𝐴 = ∅ → 0 = (vol*‘ 𝐴))
76a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴)))
8 ovolge0 25529 . . . . . . . 8 ( 𝐴 ⊆ ℝ → 0 ≤ (vol*‘ 𝐴))
98ad2antll 729 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 ≤ (vol*‘ 𝐴))
10 reldom 8989 . . . . . . . . . . . 12 Rel ≼
1110brrelex1i 5744 . . . . . . . . . . 11 (𝐴 ≼ ℕ → 𝐴 ∈ V)
12 0sdomg 9142 . . . . . . . . . . 11 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1311, 12syl 17 . . . . . . . . . 10 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1413biimparc 479 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
15 fodomr 9166 . . . . . . . . 9 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
1614, 15sylancom 588 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
17 unissb 4943 . . . . . . . . . . . 12 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
1817anbi1i 624 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
19 r19.26 3108 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2018, 19bitr4i 278 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
21 brdom2 9020 . . . . . . . . . . . . . 14 (𝑥 ≼ ℕ ↔ (𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ))
22 nnenom 14017 . . . . . . . . . . . . . . . . 17 ℕ ≈ ω
23 sdomen2 9160 . . . . . . . . . . . . . . . . 17 (ℕ ≈ ω → (𝑥 ≺ ℕ ↔ 𝑥 ≺ ω))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑥 ≺ ℕ ↔ 𝑥 ≺ ω)
25 isfinite 9689 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
2624, 25bitr4i 278 . . . . . . . . . . . . . . 15 (𝑥 ≺ ℕ ↔ 𝑥 ∈ Fin)
2726orbi1i 913 . . . . . . . . . . . . . 14 ((𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ) ↔ (𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ))
2821, 27bitri 275 . . . . . . . . . . . . 13 (𝑥 ≼ ℕ ↔ (𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ))
29 ovolfi 25542 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ 𝑥 ⊆ ℝ) → (vol*‘𝑥) = 0)
3029expcom 413 . . . . . . . . . . . . . 14 (𝑥 ⊆ ℝ → (𝑥 ∈ Fin → (vol*‘𝑥) = 0))
31 ovolctb 25538 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ ℝ ∧ 𝑥 ≈ ℕ) → (vol*‘𝑥) = 0)
3231ex 412 . . . . . . . . . . . . . 14 (𝑥 ⊆ ℝ → (𝑥 ≈ ℕ → (vol*‘𝑥) = 0))
3330, 32jaod 859 . . . . . . . . . . . . 13 (𝑥 ⊆ ℝ → ((𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ) → (vol*‘𝑥) = 0))
3428, 33biimtrid 242 . . . . . . . . . . . 12 (𝑥 ⊆ ℝ → (𝑥 ≼ ℕ → (vol*‘𝑥) = 0))
3534imdistani 568 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3635ralimi 3080 . . . . . . . . . 10 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3720, 36sylbi 217 . . . . . . . . 9 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3837ancoms 458 . . . . . . . 8 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
39 foima 6825 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴 → (𝑓 “ ℕ) = 𝐴)
4039raleqdv 3323 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)))
41 fofn 6822 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴𝑓 Fn ℕ)
42 ssid 4017 . . . . . . . . . . . . 13 ℕ ⊆ ℕ
43 sseq1 4020 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑙) → (𝑥 ⊆ ℝ ↔ (𝑓𝑙) ⊆ ℝ))
44 fveqeq2 6915 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑙) → ((vol*‘𝑥) = 0 ↔ (vol*‘(𝑓𝑙)) = 0))
4543, 44anbi12d 632 . . . . . . . . . . . . . 14 (𝑥 = (𝑓𝑙) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4645ralima 7256 . . . . . . . . . . . . 13 ((𝑓 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4741, 42, 46sylancl 586 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4840, 47bitr3d 281 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
49 fveq2 6906 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑛 → (𝑓𝑙) = (𝑓𝑛))
5049sseq1d 4026 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑛 → ((𝑓𝑙) ⊆ ℝ ↔ (𝑓𝑛) ⊆ ℝ))
51 2fveq3 6911 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑛 → (vol*‘(𝑓𝑙)) = (vol*‘(𝑓𝑛)))
5251eqeq1d 2736 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑛 → ((vol*‘(𝑓𝑙)) = 0 ↔ (vol*‘(𝑓𝑛)) = 0))
5350, 52anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑛 → (((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0)))
5453cbvralvw 3234 . . . . . . . . . . . . . . 15 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0))
55 0re 11260 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
56 eleq1a 2833 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → ((vol*‘(𝑓𝑛)) = 0 → (vol*‘(𝑓𝑛)) ∈ ℝ))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . 17 ((vol*‘(𝑓𝑛)) = 0 → (vol*‘(𝑓𝑛)) ∈ ℝ)
5857anim2i 617 . . . . . . . . . . . . . . . 16 (((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0) → ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
5958ralimi 3080 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0) → ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
6054, 59sylbi 217 . . . . . . . . . . . . . 14 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
61 ovoliunnfl.0 . . . . . . . . . . . . . 14 ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
6241, 60, 61syl2an 596 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
63 fofun 6821 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–onto𝐴 → Fun 𝑓)
64 funiunfv 7267 . . . . . . . . . . . . . . . . 17 (Fun 𝑓 𝑚 ∈ ℕ (𝑓𝑚) = (𝑓 “ ℕ))
6563, 64syl 17 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto𝐴 𝑚 ∈ ℕ (𝑓𝑚) = (𝑓 “ ℕ))
6639unieqd 4924 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto𝐴 (𝑓 “ ℕ) = 𝐴)
6765, 66eqtrd 2774 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝐴 𝑚 ∈ ℕ (𝑓𝑚) = 𝐴)
6867fveq2d 6910 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝐴 → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) = (vol*‘ 𝐴))
6968adantr 480 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) = (vol*‘ 𝐴))
70 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑚 → (𝑓𝑙) = (𝑓𝑚))
7170sseq1d 4026 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑚 → ((𝑓𝑙) ⊆ ℝ ↔ (𝑓𝑚) ⊆ ℝ))
72 2fveq3 6911 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑚 → (vol*‘(𝑓𝑙)) = (vol*‘(𝑓𝑚)))
7372eqeq1d 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑚 → ((vol*‘(𝑓𝑙)) = 0 ↔ (vol*‘(𝑓𝑚)) = 0))
7471, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑚 → (((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) = 0)))
7574rspccva 3620 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ∧ 𝑚 ∈ ℕ) → ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) = 0))
7675simprd 495 . . . . . . . . . . . . . . . . . . 19 ((∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑓𝑚)) = 0)
7776mpteq2dva 5247 . . . . . . . . . . . . . . . . . 18 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚))) = (𝑚 ∈ ℕ ↦ 0))
7877seqeq3d 14046 . . . . . . . . . . . . . . . . 17 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ 0)))
7978rneqd 5951 . . . . . . . . . . . . . . . 16 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))) = ran seq1( + , (𝑚 ∈ ℕ ↦ 0)))
8079supeq1d 9483 . . . . . . . . . . . . . . 15 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ))
81 0cn 11250 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
82 ser1const 14095 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℂ ∧ 𝑙 ∈ ℕ) → (seq1( + , (ℕ × {0}))‘𝑙) = (𝑙 · 0))
8381, 82mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑙) = (𝑙 · 0))
84 nncn 12271 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ℕ → 𝑙 ∈ ℂ)
8584mul01d 11457 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ℕ → (𝑙 · 0) = 0)
8683, 85eqtrd 2774 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑙) = 0)
8786mpteq2ia 5250 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)) = (𝑙 ∈ ℕ ↦ 0)
88 fconstmpt 5750 . . . . . . . . . . . . . . . . . . . . . 22 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
89 seqeq3 14043 . . . . . . . . . . . . . . . . . . . . . 22 ((ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0) → seq1( + , (ℕ × {0})) = seq1( + , (𝑚 ∈ ℕ ↦ 0)))
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) = seq1( + , (𝑚 ∈ ℕ ↦ 0))
91 1z 12644 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℤ
92 seqfn 14050 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℤ → seq1( + , (ℕ × {0})) Fn (ℤ‘1))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 seq1( + , (ℕ × {0})) Fn (ℤ‘1)
94 nnuz 12918 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ = (ℤ‘1)
9594fneq2i 6666 . . . . . . . . . . . . . . . . . . . . . . 23 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) Fn (ℤ‘1))
96 dffn5 6966 . . . . . . . . . . . . . . . . . . . . . . 23 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)))
9795, 96bitr3i 277 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn (ℤ‘1) ↔ seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)))
9893, 97mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙))
9990, 98eqtr3i 2764 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (𝑚 ∈ ℕ ↦ 0)) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙))
100 fconstmpt 5750 . . . . . . . . . . . . . . . . . . . 20 (ℕ × {0}) = (𝑙 ∈ ℕ ↦ 0)
10187, 99, 1003eqtr4i 2772 . . . . . . . . . . . . . . . . . . 19 seq1( + , (𝑚 ∈ ℕ ↦ 0)) = (ℕ × {0})
102101rneqi 5950 . . . . . . . . . . . . . . . . . 18 ran seq1( + , (𝑚 ∈ ℕ ↦ 0)) = ran (ℕ × {0})
103 1nn 12274 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ
104 ne0i 4346 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℕ → ℕ ≠ ∅)
105 rnxp 6191 . . . . . . . . . . . . . . . . . . 19 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
106103, 104, 105mp2b 10 . . . . . . . . . . . . . . . . . 18 ran (ℕ × {0}) = {0}
107102, 106eqtri 2762 . . . . . . . . . . . . . . . . 17 ran seq1( + , (𝑚 ∈ ℕ ↦ 0)) = {0}
108107supeq1i 9484 . . . . . . . . . . . . . . . 16 sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ) = sup({0}, ℝ*, < )
109 xrltso 13179 . . . . . . . . . . . . . . . . 17 < Or ℝ*
110 0xr 11305 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
111 supsn 9509 . . . . . . . . . . . . . . . . 17 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
112109, 110, 111mp2an 692 . . . . . . . . . . . . . . . 16 sup({0}, ℝ*, < ) = 0
113108, 112eqtri 2762 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ) = 0
11480, 113eqtrdi 2790 . . . . . . . . . . . . . 14 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = 0)
115114adantl 481 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = 0)
11662, 69, 1153brtr3d 5178 . . . . . . . . . . . 12 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝐴) ≤ 0)
117116ex 412 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → (vol*‘ 𝐴) ≤ 0))
11848, 117sylbid 240 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (vol*‘ 𝐴) ≤ 0))
119118exlimiv 1927 . . . . . . . . 9 (∃𝑓 𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (vol*‘ 𝐴) ≤ 0))
120119imp 406 . . . . . . . 8 ((∃𝑓 𝑓:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)) → (vol*‘ 𝐴) ≤ 0)
12116, 38, 120syl2an 596 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → (vol*‘ 𝐴) ≤ 0)
122 ovolcl 25526 . . . . . . . . 9 ( 𝐴 ⊆ ℝ → (vol*‘ 𝐴) ∈ ℝ*)
123 xrletri3 13192 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (vol*‘ 𝐴) ∈ ℝ*) → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
124110, 122, 123sylancr 587 . . . . . . . 8 ( 𝐴 ⊆ ℝ → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
125124ad2antll 729 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
1269, 121, 125mpbir2and 713 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴))
127126expl 457 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴)))
1287, 127pm2.61ine 3022 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴))
129 renepnf 11306 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
13055, 129mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
131 fveq2 6906 . . . . . . 7 ( 𝐴 = ℝ → (vol*‘ 𝐴) = (vol*‘ℝ))
132 ovolre 25573 . . . . . . 7 (vol*‘ℝ) = +∞
133131, 132eqtrdi 2790 . . . . . 6 ( 𝐴 = ℝ → (vol*‘ 𝐴) = +∞)
134130, 133neeqtrrd 3012 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol*‘ 𝐴))
135134necon2i 2972 . . . 4 (0 = (vol*‘ 𝐴) → 𝐴 ≠ ℝ)
136128, 135syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
137136expr 456 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
138 eqimss 4053 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
139138necon3bi 2964 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
140137, 139pm2.61d1 180 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  Vcvv 3477  wss 3962  c0 4338  {csn 4630   cuni 4911   ciun 4995   class class class wbr 5147  cmpt 5230   Or wor 5595   × cxp 5686  ran crn 5689  cima 5691  Fun wfun 6556   Fn wfn 6557  ontowfo 6560  cfv 6562  (class class class)co 7430  ωcom 7886  cen 8980  cdom 8981  csdm 8982  Fincfn 8983  supcsup 9477  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cn 12263  cz 12610  cuz 12875  seqcseq 14038  vol*covol 25510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-ovol 25512
This theorem is referenced by:  ex-ovoliunnfl  37649
  Copyright terms: Public domain W3C validator