Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovoliunnfl Structured version   Visualization version   GIF version

Theorem ovoliunnfl 37632
Description: ovoliun 25456 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.)
Hypothesis
Ref Expression
ovoliunnfl.0 ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
Assertion
Ref Expression
ovoliunnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑚,𝑥,𝐴

Proof of Theorem ovoliunnfl
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 unieq 4894 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4911 . . . . . . . . 9 ∅ = ∅
31, 2eqtrdi 2786 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6879 . . . . . . 7 (𝐴 = ∅ → (vol*‘ 𝐴) = (vol*‘∅))
5 ovol0 25444 . . . . . . 7 (vol*‘∅) = 0
64, 5eqtr2di 2787 . . . . . 6 (𝐴 = ∅ → 0 = (vol*‘ 𝐴))
76a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴)))
8 ovolge0 25432 . . . . . . . 8 ( 𝐴 ⊆ ℝ → 0 ≤ (vol*‘ 𝐴))
98ad2antll 729 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 ≤ (vol*‘ 𝐴))
10 reldom 8963 . . . . . . . . . . . 12 Rel ≼
1110brrelex1i 5710 . . . . . . . . . . 11 (𝐴 ≼ ℕ → 𝐴 ∈ V)
12 0sdomg 9116 . . . . . . . . . . 11 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1311, 12syl 17 . . . . . . . . . 10 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1413biimparc 479 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
15 fodomr 9140 . . . . . . . . 9 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
1614, 15sylancom 588 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
17 unissb 4915 . . . . . . . . . . . 12 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
1817anbi1i 624 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
19 r19.26 3098 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2018, 19bitr4i 278 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
21 brdom2 8994 . . . . . . . . . . . . . 14 (𝑥 ≼ ℕ ↔ (𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ))
22 nnenom 13996 . . . . . . . . . . . . . . . . 17 ℕ ≈ ω
23 sdomen2 9134 . . . . . . . . . . . . . . . . 17 (ℕ ≈ ω → (𝑥 ≺ ℕ ↔ 𝑥 ≺ ω))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑥 ≺ ℕ ↔ 𝑥 ≺ ω)
25 isfinite 9664 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
2624, 25bitr4i 278 . . . . . . . . . . . . . . 15 (𝑥 ≺ ℕ ↔ 𝑥 ∈ Fin)
2726orbi1i 913 . . . . . . . . . . . . . 14 ((𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ) ↔ (𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ))
2821, 27bitri 275 . . . . . . . . . . . . 13 (𝑥 ≼ ℕ ↔ (𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ))
29 ovolfi 25445 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ 𝑥 ⊆ ℝ) → (vol*‘𝑥) = 0)
3029expcom 413 . . . . . . . . . . . . . 14 (𝑥 ⊆ ℝ → (𝑥 ∈ Fin → (vol*‘𝑥) = 0))
31 ovolctb 25441 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ ℝ ∧ 𝑥 ≈ ℕ) → (vol*‘𝑥) = 0)
3231ex 412 . . . . . . . . . . . . . 14 (𝑥 ⊆ ℝ → (𝑥 ≈ ℕ → (vol*‘𝑥) = 0))
3330, 32jaod 859 . . . . . . . . . . . . 13 (𝑥 ⊆ ℝ → ((𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ) → (vol*‘𝑥) = 0))
3428, 33biimtrid 242 . . . . . . . . . . . 12 (𝑥 ⊆ ℝ → (𝑥 ≼ ℕ → (vol*‘𝑥) = 0))
3534imdistani 568 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3635ralimi 3073 . . . . . . . . . 10 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3720, 36sylbi 217 . . . . . . . . 9 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3837ancoms 458 . . . . . . . 8 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
39 foima 6794 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴 → (𝑓 “ ℕ) = 𝐴)
4039raleqdv 3305 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)))
41 fofn 6791 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴𝑓 Fn ℕ)
42 ssid 3981 . . . . . . . . . . . . 13 ℕ ⊆ ℕ
43 sseq1 3984 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑙) → (𝑥 ⊆ ℝ ↔ (𝑓𝑙) ⊆ ℝ))
44 fveqeq2 6884 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑙) → ((vol*‘𝑥) = 0 ↔ (vol*‘(𝑓𝑙)) = 0))
4543, 44anbi12d 632 . . . . . . . . . . . . . 14 (𝑥 = (𝑓𝑙) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4645ralima 7228 . . . . . . . . . . . . 13 ((𝑓 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4741, 42, 46sylancl 586 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4840, 47bitr3d 281 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
49 fveq2 6875 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑛 → (𝑓𝑙) = (𝑓𝑛))
5049sseq1d 3990 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑛 → ((𝑓𝑙) ⊆ ℝ ↔ (𝑓𝑛) ⊆ ℝ))
51 2fveq3 6880 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑛 → (vol*‘(𝑓𝑙)) = (vol*‘(𝑓𝑛)))
5251eqeq1d 2737 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑛 → ((vol*‘(𝑓𝑙)) = 0 ↔ (vol*‘(𝑓𝑛)) = 0))
5350, 52anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑛 → (((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0)))
5453cbvralvw 3220 . . . . . . . . . . . . . . 15 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0))
55 0re 11235 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
56 eleq1a 2829 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → ((vol*‘(𝑓𝑛)) = 0 → (vol*‘(𝑓𝑛)) ∈ ℝ))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . 17 ((vol*‘(𝑓𝑛)) = 0 → (vol*‘(𝑓𝑛)) ∈ ℝ)
5857anim2i 617 . . . . . . . . . . . . . . . 16 (((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0) → ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
5958ralimi 3073 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0) → ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
6054, 59sylbi 217 . . . . . . . . . . . . . 14 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
61 ovoliunnfl.0 . . . . . . . . . . . . . 14 ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
6241, 60, 61syl2an 596 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
63 fofun 6790 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–onto𝐴 → Fun 𝑓)
64 funiunfv 7239 . . . . . . . . . . . . . . . . 17 (Fun 𝑓 𝑚 ∈ ℕ (𝑓𝑚) = (𝑓 “ ℕ))
6563, 64syl 17 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto𝐴 𝑚 ∈ ℕ (𝑓𝑚) = (𝑓 “ ℕ))
6639unieqd 4896 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto𝐴 (𝑓 “ ℕ) = 𝐴)
6765, 66eqtrd 2770 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝐴 𝑚 ∈ ℕ (𝑓𝑚) = 𝐴)
6867fveq2d 6879 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝐴 → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) = (vol*‘ 𝐴))
6968adantr 480 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) = (vol*‘ 𝐴))
70 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑚 → (𝑓𝑙) = (𝑓𝑚))
7170sseq1d 3990 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑚 → ((𝑓𝑙) ⊆ ℝ ↔ (𝑓𝑚) ⊆ ℝ))
72 2fveq3 6880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑚 → (vol*‘(𝑓𝑙)) = (vol*‘(𝑓𝑚)))
7372eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑚 → ((vol*‘(𝑓𝑙)) = 0 ↔ (vol*‘(𝑓𝑚)) = 0))
7471, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑚 → (((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) = 0)))
7574rspccva 3600 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ∧ 𝑚 ∈ ℕ) → ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) = 0))
7675simprd 495 . . . . . . . . . . . . . . . . . . 19 ((∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑓𝑚)) = 0)
7776mpteq2dva 5214 . . . . . . . . . . . . . . . . . 18 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚))) = (𝑚 ∈ ℕ ↦ 0))
7877seqeq3d 14025 . . . . . . . . . . . . . . . . 17 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ 0)))
7978rneqd 5918 . . . . . . . . . . . . . . . 16 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))) = ran seq1( + , (𝑚 ∈ ℕ ↦ 0)))
8079supeq1d 9456 . . . . . . . . . . . . . . 15 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ))
81 0cn 11225 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
82 ser1const 14074 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℂ ∧ 𝑙 ∈ ℕ) → (seq1( + , (ℕ × {0}))‘𝑙) = (𝑙 · 0))
8381, 82mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑙) = (𝑙 · 0))
84 nncn 12246 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ℕ → 𝑙 ∈ ℂ)
8584mul01d 11432 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ℕ → (𝑙 · 0) = 0)
8683, 85eqtrd 2770 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑙) = 0)
8786mpteq2ia 5216 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)) = (𝑙 ∈ ℕ ↦ 0)
88 fconstmpt 5716 . . . . . . . . . . . . . . . . . . . . . 22 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
89 seqeq3 14022 . . . . . . . . . . . . . . . . . . . . . 22 ((ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0) → seq1( + , (ℕ × {0})) = seq1( + , (𝑚 ∈ ℕ ↦ 0)))
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) = seq1( + , (𝑚 ∈ ℕ ↦ 0))
91 1z 12620 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℤ
92 seqfn 14029 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℤ → seq1( + , (ℕ × {0})) Fn (ℤ‘1))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 seq1( + , (ℕ × {0})) Fn (ℤ‘1)
94 nnuz 12893 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ = (ℤ‘1)
9594fneq2i 6635 . . . . . . . . . . . . . . . . . . . . . . 23 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) Fn (ℤ‘1))
96 dffn5 6936 . . . . . . . . . . . . . . . . . . . . . . 23 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)))
9795, 96bitr3i 277 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn (ℤ‘1) ↔ seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)))
9893, 97mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙))
9990, 98eqtr3i 2760 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (𝑚 ∈ ℕ ↦ 0)) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙))
100 fconstmpt 5716 . . . . . . . . . . . . . . . . . . . 20 (ℕ × {0}) = (𝑙 ∈ ℕ ↦ 0)
10187, 99, 1003eqtr4i 2768 . . . . . . . . . . . . . . . . . . 19 seq1( + , (𝑚 ∈ ℕ ↦ 0)) = (ℕ × {0})
102101rneqi 5917 . . . . . . . . . . . . . . . . . 18 ran seq1( + , (𝑚 ∈ ℕ ↦ 0)) = ran (ℕ × {0})
103 1nn 12249 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ
104 ne0i 4316 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℕ → ℕ ≠ ∅)
105 rnxp 6159 . . . . . . . . . . . . . . . . . . 19 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
106103, 104, 105mp2b 10 . . . . . . . . . . . . . . . . . 18 ran (ℕ × {0}) = {0}
107102, 106eqtri 2758 . . . . . . . . . . . . . . . . 17 ran seq1( + , (𝑚 ∈ ℕ ↦ 0)) = {0}
108107supeq1i 9457 . . . . . . . . . . . . . . . 16 sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ) = sup({0}, ℝ*, < )
109 xrltso 13155 . . . . . . . . . . . . . . . . 17 < Or ℝ*
110 0xr 11280 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
111 supsn 9483 . . . . . . . . . . . . . . . . 17 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
112109, 110, 111mp2an 692 . . . . . . . . . . . . . . . 16 sup({0}, ℝ*, < ) = 0
113108, 112eqtri 2758 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ) = 0
11480, 113eqtrdi 2786 . . . . . . . . . . . . . 14 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = 0)
115114adantl 481 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = 0)
11662, 69, 1153brtr3d 5150 . . . . . . . . . . . 12 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝐴) ≤ 0)
117116ex 412 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → (vol*‘ 𝐴) ≤ 0))
11848, 117sylbid 240 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (vol*‘ 𝐴) ≤ 0))
119118exlimiv 1930 . . . . . . . . 9 (∃𝑓 𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (vol*‘ 𝐴) ≤ 0))
120119imp 406 . . . . . . . 8 ((∃𝑓 𝑓:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)) → (vol*‘ 𝐴) ≤ 0)
12116, 38, 120syl2an 596 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → (vol*‘ 𝐴) ≤ 0)
122 ovolcl 25429 . . . . . . . . 9 ( 𝐴 ⊆ ℝ → (vol*‘ 𝐴) ∈ ℝ*)
123 xrletri3 13168 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (vol*‘ 𝐴) ∈ ℝ*) → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
124110, 122, 123sylancr 587 . . . . . . . 8 ( 𝐴 ⊆ ℝ → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
125124ad2antll 729 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
1269, 121, 125mpbir2and 713 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴))
127126expl 457 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴)))
1287, 127pm2.61ine 3015 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴))
129 renepnf 11281 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
13055, 129mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
131 fveq2 6875 . . . . . . 7 ( 𝐴 = ℝ → (vol*‘ 𝐴) = (vol*‘ℝ))
132 ovolre 25476 . . . . . . 7 (vol*‘ℝ) = +∞
133131, 132eqtrdi 2786 . . . . . 6 ( 𝐴 = ℝ → (vol*‘ 𝐴) = +∞)
134130, 133neeqtrrd 3006 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol*‘ 𝐴))
135134necon2i 2966 . . . 4 (0 = (vol*‘ 𝐴) → 𝐴 ≠ ℝ)
136128, 135syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
137136expr 456 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
138 eqimss 4017 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
139138necon3bi 2958 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
140137, 139pm2.61d1 180 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  Vcvv 3459  wss 3926  c0 4308  {csn 4601   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201   Or wor 5560   × cxp 5652  ran crn 5655  cima 5657  Fun wfun 6524   Fn wfn 6525  ontowfo 6528  cfv 6530  (class class class)co 7403  ωcom 7859  cen 8954  cdom 8955  csdm 8956  Fincfn 8957  supcsup 9450  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  cn 12238  cz 12586  cuz 12850  seqcseq 14017  vol*covol 25413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cmp 23323  df-ovol 25415
This theorem is referenced by:  ex-ovoliunnfl  37633
  Copyright terms: Public domain W3C validator