Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovoliunnfl Structured version   Visualization version   GIF version

Theorem ovoliunnfl 37656
Description: ovoliun 25406 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.)
Hypothesis
Ref Expression
ovoliunnfl.0 ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
Assertion
Ref Expression
ovoliunnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑚,𝑥,𝐴

Proof of Theorem ovoliunnfl
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 unieq 4882 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4899 . . . . . . . . 9 ∅ = ∅
31, 2eqtrdi 2780 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6862 . . . . . . 7 (𝐴 = ∅ → (vol*‘ 𝐴) = (vol*‘∅))
5 ovol0 25394 . . . . . . 7 (vol*‘∅) = 0
64, 5eqtr2di 2781 . . . . . 6 (𝐴 = ∅ → 0 = (vol*‘ 𝐴))
76a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴)))
8 ovolge0 25382 . . . . . . . 8 ( 𝐴 ⊆ ℝ → 0 ≤ (vol*‘ 𝐴))
98ad2antll 729 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 ≤ (vol*‘ 𝐴))
10 reldom 8924 . . . . . . . . . . . 12 Rel ≼
1110brrelex1i 5694 . . . . . . . . . . 11 (𝐴 ≼ ℕ → 𝐴 ∈ V)
12 0sdomg 9070 . . . . . . . . . . 11 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1311, 12syl 17 . . . . . . . . . 10 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1413biimparc 479 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
15 fodomr 9092 . . . . . . . . 9 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
1614, 15sylancom 588 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
17 unissb 4903 . . . . . . . . . . . 12 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
1817anbi1i 624 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
19 r19.26 3091 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2018, 19bitr4i 278 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
21 brdom2 8953 . . . . . . . . . . . . . 14 (𝑥 ≼ ℕ ↔ (𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ))
22 nnenom 13945 . . . . . . . . . . . . . . . . 17 ℕ ≈ ω
23 sdomen2 9086 . . . . . . . . . . . . . . . . 17 (ℕ ≈ ω → (𝑥 ≺ ℕ ↔ 𝑥 ≺ ω))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑥 ≺ ℕ ↔ 𝑥 ≺ ω)
25 isfinite 9605 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
2624, 25bitr4i 278 . . . . . . . . . . . . . . 15 (𝑥 ≺ ℕ ↔ 𝑥 ∈ Fin)
2726orbi1i 913 . . . . . . . . . . . . . 14 ((𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ) ↔ (𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ))
2821, 27bitri 275 . . . . . . . . . . . . 13 (𝑥 ≼ ℕ ↔ (𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ))
29 ovolfi 25395 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ 𝑥 ⊆ ℝ) → (vol*‘𝑥) = 0)
3029expcom 413 . . . . . . . . . . . . . 14 (𝑥 ⊆ ℝ → (𝑥 ∈ Fin → (vol*‘𝑥) = 0))
31 ovolctb 25391 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ ℝ ∧ 𝑥 ≈ ℕ) → (vol*‘𝑥) = 0)
3231ex 412 . . . . . . . . . . . . . 14 (𝑥 ⊆ ℝ → (𝑥 ≈ ℕ → (vol*‘𝑥) = 0))
3330, 32jaod 859 . . . . . . . . . . . . 13 (𝑥 ⊆ ℝ → ((𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ) → (vol*‘𝑥) = 0))
3428, 33biimtrid 242 . . . . . . . . . . . 12 (𝑥 ⊆ ℝ → (𝑥 ≼ ℕ → (vol*‘𝑥) = 0))
3534imdistani 568 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3635ralimi 3066 . . . . . . . . . 10 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3720, 36sylbi 217 . . . . . . . . 9 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3837ancoms 458 . . . . . . . 8 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
39 foima 6777 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴 → (𝑓 “ ℕ) = 𝐴)
4039raleqdv 3299 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)))
41 fofn 6774 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴𝑓 Fn ℕ)
42 ssid 3969 . . . . . . . . . . . . 13 ℕ ⊆ ℕ
43 sseq1 3972 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑙) → (𝑥 ⊆ ℝ ↔ (𝑓𝑙) ⊆ ℝ))
44 fveqeq2 6867 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑙) → ((vol*‘𝑥) = 0 ↔ (vol*‘(𝑓𝑙)) = 0))
4543, 44anbi12d 632 . . . . . . . . . . . . . 14 (𝑥 = (𝑓𝑙) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4645ralima 7211 . . . . . . . . . . . . 13 ((𝑓 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4741, 42, 46sylancl 586 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4840, 47bitr3d 281 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
49 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑛 → (𝑓𝑙) = (𝑓𝑛))
5049sseq1d 3978 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑛 → ((𝑓𝑙) ⊆ ℝ ↔ (𝑓𝑛) ⊆ ℝ))
51 2fveq3 6863 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑛 → (vol*‘(𝑓𝑙)) = (vol*‘(𝑓𝑛)))
5251eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑛 → ((vol*‘(𝑓𝑙)) = 0 ↔ (vol*‘(𝑓𝑛)) = 0))
5350, 52anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑛 → (((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0)))
5453cbvralvw 3215 . . . . . . . . . . . . . . 15 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0))
55 0re 11176 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
56 eleq1a 2823 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → ((vol*‘(𝑓𝑛)) = 0 → (vol*‘(𝑓𝑛)) ∈ ℝ))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . 17 ((vol*‘(𝑓𝑛)) = 0 → (vol*‘(𝑓𝑛)) ∈ ℝ)
5857anim2i 617 . . . . . . . . . . . . . . . 16 (((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0) → ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
5958ralimi 3066 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0) → ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
6054, 59sylbi 217 . . . . . . . . . . . . . 14 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
61 ovoliunnfl.0 . . . . . . . . . . . . . 14 ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
6241, 60, 61syl2an 596 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
63 fofun 6773 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–onto𝐴 → Fun 𝑓)
64 funiunfv 7222 . . . . . . . . . . . . . . . . 17 (Fun 𝑓 𝑚 ∈ ℕ (𝑓𝑚) = (𝑓 “ ℕ))
6563, 64syl 17 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto𝐴 𝑚 ∈ ℕ (𝑓𝑚) = (𝑓 “ ℕ))
6639unieqd 4884 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto𝐴 (𝑓 “ ℕ) = 𝐴)
6765, 66eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝐴 𝑚 ∈ ℕ (𝑓𝑚) = 𝐴)
6867fveq2d 6862 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝐴 → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) = (vol*‘ 𝐴))
6968adantr 480 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) = (vol*‘ 𝐴))
70 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑚 → (𝑓𝑙) = (𝑓𝑚))
7170sseq1d 3978 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑚 → ((𝑓𝑙) ⊆ ℝ ↔ (𝑓𝑚) ⊆ ℝ))
72 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑚 → (vol*‘(𝑓𝑙)) = (vol*‘(𝑓𝑚)))
7372eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑚 → ((vol*‘(𝑓𝑙)) = 0 ↔ (vol*‘(𝑓𝑚)) = 0))
7471, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑚 → (((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) = 0)))
7574rspccva 3587 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ∧ 𝑚 ∈ ℕ) → ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) = 0))
7675simprd 495 . . . . . . . . . . . . . . . . . . 19 ((∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑓𝑚)) = 0)
7776mpteq2dva 5200 . . . . . . . . . . . . . . . . . 18 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚))) = (𝑚 ∈ ℕ ↦ 0))
7877seqeq3d 13974 . . . . . . . . . . . . . . . . 17 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ 0)))
7978rneqd 5902 . . . . . . . . . . . . . . . 16 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))) = ran seq1( + , (𝑚 ∈ ℕ ↦ 0)))
8079supeq1d 9397 . . . . . . . . . . . . . . 15 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ))
81 0cn 11166 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
82 ser1const 14023 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℂ ∧ 𝑙 ∈ ℕ) → (seq1( + , (ℕ × {0}))‘𝑙) = (𝑙 · 0))
8381, 82mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑙) = (𝑙 · 0))
84 nncn 12194 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ℕ → 𝑙 ∈ ℂ)
8584mul01d 11373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ℕ → (𝑙 · 0) = 0)
8683, 85eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑙) = 0)
8786mpteq2ia 5202 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)) = (𝑙 ∈ ℕ ↦ 0)
88 fconstmpt 5700 . . . . . . . . . . . . . . . . . . . . . 22 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
89 seqeq3 13971 . . . . . . . . . . . . . . . . . . . . . 22 ((ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0) → seq1( + , (ℕ × {0})) = seq1( + , (𝑚 ∈ ℕ ↦ 0)))
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) = seq1( + , (𝑚 ∈ ℕ ↦ 0))
91 1z 12563 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℤ
92 seqfn 13978 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℤ → seq1( + , (ℕ × {0})) Fn (ℤ‘1))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 seq1( + , (ℕ × {0})) Fn (ℤ‘1)
94 nnuz 12836 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ = (ℤ‘1)
9594fneq2i 6616 . . . . . . . . . . . . . . . . . . . . . . 23 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) Fn (ℤ‘1))
96 dffn5 6919 . . . . . . . . . . . . . . . . . . . . . . 23 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)))
9795, 96bitr3i 277 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn (ℤ‘1) ↔ seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)))
9893, 97mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙))
9990, 98eqtr3i 2754 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (𝑚 ∈ ℕ ↦ 0)) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙))
100 fconstmpt 5700 . . . . . . . . . . . . . . . . . . . 20 (ℕ × {0}) = (𝑙 ∈ ℕ ↦ 0)
10187, 99, 1003eqtr4i 2762 . . . . . . . . . . . . . . . . . . 19 seq1( + , (𝑚 ∈ ℕ ↦ 0)) = (ℕ × {0})
102101rneqi 5901 . . . . . . . . . . . . . . . . . 18 ran seq1( + , (𝑚 ∈ ℕ ↦ 0)) = ran (ℕ × {0})
103 1nn 12197 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ
104 ne0i 4304 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℕ → ℕ ≠ ∅)
105 rnxp 6143 . . . . . . . . . . . . . . . . . . 19 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
106103, 104, 105mp2b 10 . . . . . . . . . . . . . . . . . 18 ran (ℕ × {0}) = {0}
107102, 106eqtri 2752 . . . . . . . . . . . . . . . . 17 ran seq1( + , (𝑚 ∈ ℕ ↦ 0)) = {0}
108107supeq1i 9398 . . . . . . . . . . . . . . . 16 sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ) = sup({0}, ℝ*, < )
109 xrltso 13101 . . . . . . . . . . . . . . . . 17 < Or ℝ*
110 0xr 11221 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
111 supsn 9424 . . . . . . . . . . . . . . . . 17 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
112109, 110, 111mp2an 692 . . . . . . . . . . . . . . . 16 sup({0}, ℝ*, < ) = 0
113108, 112eqtri 2752 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ) = 0
11480, 113eqtrdi 2780 . . . . . . . . . . . . . 14 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = 0)
115114adantl 481 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = 0)
11662, 69, 1153brtr3d 5138 . . . . . . . . . . . 12 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝐴) ≤ 0)
117116ex 412 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → (vol*‘ 𝐴) ≤ 0))
11848, 117sylbid 240 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (vol*‘ 𝐴) ≤ 0))
119118exlimiv 1930 . . . . . . . . 9 (∃𝑓 𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (vol*‘ 𝐴) ≤ 0))
120119imp 406 . . . . . . . 8 ((∃𝑓 𝑓:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)) → (vol*‘ 𝐴) ≤ 0)
12116, 38, 120syl2an 596 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → (vol*‘ 𝐴) ≤ 0)
122 ovolcl 25379 . . . . . . . . 9 ( 𝐴 ⊆ ℝ → (vol*‘ 𝐴) ∈ ℝ*)
123 xrletri3 13114 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (vol*‘ 𝐴) ∈ ℝ*) → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
124110, 122, 123sylancr 587 . . . . . . . 8 ( 𝐴 ⊆ ℝ → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
125124ad2antll 729 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
1269, 121, 125mpbir2and 713 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴))
127126expl 457 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴)))
1287, 127pm2.61ine 3008 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴))
129 renepnf 11222 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
13055, 129mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
131 fveq2 6858 . . . . . . 7 ( 𝐴 = ℝ → (vol*‘ 𝐴) = (vol*‘ℝ))
132 ovolre 25426 . . . . . . 7 (vol*‘ℝ) = +∞
133131, 132eqtrdi 2780 . . . . . 6 ( 𝐴 = ℝ → (vol*‘ 𝐴) = +∞)
134130, 133neeqtrrd 2999 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol*‘ 𝐴))
135134necon2i 2959 . . . 4 (0 = (vol*‘ 𝐴) → 𝐴 ≠ ℝ)
136128, 135syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
137136expr 456 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
138 eqimss 4005 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
139138necon3bi 2951 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
140137, 139pm2.61d1 180 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3447  wss 3914  c0 4296  {csn 4589   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188   Or wor 5545   × cxp 5636  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  ontowfo 6509  cfv 6511  (class class class)co 7387  ωcom 7842  cen 8915  cdom 8916  csdm 8917  Fincfn 8918  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cn 12186  cz 12529  cuz 12793  seqcseq 13966  vol*covol 25363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365
This theorem is referenced by:  ex-ovoliunnfl  37657
  Copyright terms: Public domain W3C validator