Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovoliunnfl Structured version   Visualization version   GIF version

Theorem ovoliunnfl 37649
Description: ovoliun 25439 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 21-Nov-2017.)
Hypothesis
Ref Expression
ovoliunnfl.0 ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
Assertion
Ref Expression
ovoliunnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑚,𝑥,𝐴

Proof of Theorem ovoliunnfl
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 unieq 4878 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4895 . . . . . . . . 9 ∅ = ∅
31, 2eqtrdi 2780 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6844 . . . . . . 7 (𝐴 = ∅ → (vol*‘ 𝐴) = (vol*‘∅))
5 ovol0 25427 . . . . . . 7 (vol*‘∅) = 0
64, 5eqtr2di 2781 . . . . . 6 (𝐴 = ∅ → 0 = (vol*‘ 𝐴))
76a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴)))
8 ovolge0 25415 . . . . . . . 8 ( 𝐴 ⊆ ℝ → 0 ≤ (vol*‘ 𝐴))
98ad2antll 729 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 ≤ (vol*‘ 𝐴))
10 reldom 8901 . . . . . . . . . . . 12 Rel ≼
1110brrelex1i 5687 . . . . . . . . . . 11 (𝐴 ≼ ℕ → 𝐴 ∈ V)
12 0sdomg 9047 . . . . . . . . . . 11 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1311, 12syl 17 . . . . . . . . . 10 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1413biimparc 479 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
15 fodomr 9069 . . . . . . . . 9 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
1614, 15sylancom 588 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
17 unissb 4899 . . . . . . . . . . . 12 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
1817anbi1i 624 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
19 r19.26 3091 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2018, 19bitr4i 278 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
21 brdom2 8930 . . . . . . . . . . . . . 14 (𝑥 ≼ ℕ ↔ (𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ))
22 nnenom 13921 . . . . . . . . . . . . . . . . 17 ℕ ≈ ω
23 sdomen2 9063 . . . . . . . . . . . . . . . . 17 (ℕ ≈ ω → (𝑥 ≺ ℕ ↔ 𝑥 ≺ ω))
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑥 ≺ ℕ ↔ 𝑥 ≺ ω)
25 isfinite 9581 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
2624, 25bitr4i 278 . . . . . . . . . . . . . . 15 (𝑥 ≺ ℕ ↔ 𝑥 ∈ Fin)
2726orbi1i 913 . . . . . . . . . . . . . 14 ((𝑥 ≺ ℕ ∨ 𝑥 ≈ ℕ) ↔ (𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ))
2821, 27bitri 275 . . . . . . . . . . . . 13 (𝑥 ≼ ℕ ↔ (𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ))
29 ovolfi 25428 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Fin ∧ 𝑥 ⊆ ℝ) → (vol*‘𝑥) = 0)
3029expcom 413 . . . . . . . . . . . . . 14 (𝑥 ⊆ ℝ → (𝑥 ∈ Fin → (vol*‘𝑥) = 0))
31 ovolctb 25424 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ ℝ ∧ 𝑥 ≈ ℕ) → (vol*‘𝑥) = 0)
3231ex 412 . . . . . . . . . . . . . 14 (𝑥 ⊆ ℝ → (𝑥 ≈ ℕ → (vol*‘𝑥) = 0))
3330, 32jaod 859 . . . . . . . . . . . . 13 (𝑥 ⊆ ℝ → ((𝑥 ∈ Fin ∨ 𝑥 ≈ ℕ) → (vol*‘𝑥) = 0))
3428, 33biimtrid 242 . . . . . . . . . . . 12 (𝑥 ⊆ ℝ → (𝑥 ≼ ℕ → (vol*‘𝑥) = 0))
3534imdistani 568 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3635ralimi 3066 . . . . . . . . . 10 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3720, 36sylbi 217 . . . . . . . . 9 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
3837ancoms 458 . . . . . . . 8 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
39 foima 6759 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴 → (𝑓 “ ℕ) = 𝐴)
4039raleqdv 3296 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)))
41 fofn 6756 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝐴𝑓 Fn ℕ)
42 ssid 3966 . . . . . . . . . . . . 13 ℕ ⊆ ℕ
43 sseq1 3969 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑙) → (𝑥 ⊆ ℝ ↔ (𝑓𝑙) ⊆ ℝ))
44 fveqeq2 6849 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑙) → ((vol*‘𝑥) = 0 ↔ (vol*‘(𝑓𝑙)) = 0))
4543, 44anbi12d 632 . . . . . . . . . . . . . 14 (𝑥 = (𝑓𝑙) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4645ralima 7193 . . . . . . . . . . . . 13 ((𝑓 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4741, 42, 46sylancl 586 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑓 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
4840, 47bitr3d 281 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)))
49 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑛 → (𝑓𝑙) = (𝑓𝑛))
5049sseq1d 3975 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑛 → ((𝑓𝑙) ⊆ ℝ ↔ (𝑓𝑛) ⊆ ℝ))
51 2fveq3 6845 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑛 → (vol*‘(𝑓𝑙)) = (vol*‘(𝑓𝑛)))
5251eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑛 → ((vol*‘(𝑓𝑙)) = 0 ↔ (vol*‘(𝑓𝑛)) = 0))
5350, 52anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑛 → (((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0)))
5453cbvralvw 3213 . . . . . . . . . . . . . . 15 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0))
55 0re 11152 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
56 eleq1a 2823 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → ((vol*‘(𝑓𝑛)) = 0 → (vol*‘(𝑓𝑛)) ∈ ℝ))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . 17 ((vol*‘(𝑓𝑛)) = 0 → (vol*‘(𝑓𝑛)) ∈ ℝ)
5857anim2i 617 . . . . . . . . . . . . . . . 16 (((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0) → ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
5958ralimi 3066 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) = 0) → ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
6054, 59sylbi 217 . . . . . . . . . . . . . 14 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ))
61 ovoliunnfl.0 . . . . . . . . . . . . . 14 ((𝑓 Fn ℕ ∧ ∀𝑛 ∈ ℕ ((𝑓𝑛) ⊆ ℝ ∧ (vol*‘(𝑓𝑛)) ∈ ℝ)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
6241, 60, 61syl2an 596 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) ≤ sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ))
63 fofun 6755 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–onto𝐴 → Fun 𝑓)
64 funiunfv 7204 . . . . . . . . . . . . . . . . 17 (Fun 𝑓 𝑚 ∈ ℕ (𝑓𝑚) = (𝑓 “ ℕ))
6563, 64syl 17 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto𝐴 𝑚 ∈ ℕ (𝑓𝑚) = (𝑓 “ ℕ))
6639unieqd 4880 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto𝐴 (𝑓 “ ℕ) = 𝐴)
6765, 66eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝐴 𝑚 ∈ ℕ (𝑓𝑚) = 𝐴)
6867fveq2d 6844 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝐴 → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) = (vol*‘ 𝐴))
6968adantr 480 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝑚 ∈ ℕ (𝑓𝑚)) = (vol*‘ 𝐴))
70 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑚 → (𝑓𝑙) = (𝑓𝑚))
7170sseq1d 3975 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑚 → ((𝑓𝑙) ⊆ ℝ ↔ (𝑓𝑚) ⊆ ℝ))
72 2fveq3 6845 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑚 → (vol*‘(𝑓𝑙)) = (vol*‘(𝑓𝑚)))
7372eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑚 → ((vol*‘(𝑓𝑙)) = 0 ↔ (vol*‘(𝑓𝑚)) = 0))
7471, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑚 → (((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ↔ ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) = 0)))
7574rspccva 3584 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ∧ 𝑚 ∈ ℕ) → ((𝑓𝑚) ⊆ ℝ ∧ (vol*‘(𝑓𝑚)) = 0))
7675simprd 495 . . . . . . . . . . . . . . . . . . 19 ((∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑓𝑚)) = 0)
7776mpteq2dva 5195 . . . . . . . . . . . . . . . . . 18 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚))) = (𝑚 ∈ ℕ ↦ 0))
7877seqeq3d 13950 . . . . . . . . . . . . . . . . 17 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))) = seq1( + , (𝑚 ∈ ℕ ↦ 0)))
7978rneqd 5891 . . . . . . . . . . . . . . . 16 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))) = ran seq1( + , (𝑚 ∈ ℕ ↦ 0)))
8079supeq1d 9373 . . . . . . . . . . . . . . 15 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ))
81 0cn 11142 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
82 ser1const 13999 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℂ ∧ 𝑙 ∈ ℕ) → (seq1( + , (ℕ × {0}))‘𝑙) = (𝑙 · 0))
8381, 82mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑙) = (𝑙 · 0))
84 nncn 12170 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 ∈ ℕ → 𝑙 ∈ ℂ)
8584mul01d 11349 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 ∈ ℕ → (𝑙 · 0) = 0)
8683, 85eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑙) = 0)
8786mpteq2ia 5197 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)) = (𝑙 ∈ ℕ ↦ 0)
88 fconstmpt 5693 . . . . . . . . . . . . . . . . . . . . . 22 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
89 seqeq3 13947 . . . . . . . . . . . . . . . . . . . . . 22 ((ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0) → seq1( + , (ℕ × {0})) = seq1( + , (𝑚 ∈ ℕ ↦ 0)))
9088, 89ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) = seq1( + , (𝑚 ∈ ℕ ↦ 0))
91 1z 12539 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℤ
92 seqfn 13954 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℤ → seq1( + , (ℕ × {0})) Fn (ℤ‘1))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 seq1( + , (ℕ × {0})) Fn (ℤ‘1)
94 nnuz 12812 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ = (ℤ‘1)
9594fneq2i 6598 . . . . . . . . . . . . . . . . . . . . . . 23 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) Fn (ℤ‘1))
96 dffn5 6901 . . . . . . . . . . . . . . . . . . . . . . 23 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)))
9795, 96bitr3i 277 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn (ℤ‘1) ↔ seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙)))
9893, 97mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙))
9990, 98eqtr3i 2754 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (𝑚 ∈ ℕ ↦ 0)) = (𝑙 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑙))
100 fconstmpt 5693 . . . . . . . . . . . . . . . . . . . 20 (ℕ × {0}) = (𝑙 ∈ ℕ ↦ 0)
10187, 99, 1003eqtr4i 2762 . . . . . . . . . . . . . . . . . . 19 seq1( + , (𝑚 ∈ ℕ ↦ 0)) = (ℕ × {0})
102101rneqi 5890 . . . . . . . . . . . . . . . . . 18 ran seq1( + , (𝑚 ∈ ℕ ↦ 0)) = ran (ℕ × {0})
103 1nn 12173 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ
104 ne0i 4300 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℕ → ℕ ≠ ∅)
105 rnxp 6131 . . . . . . . . . . . . . . . . . . 19 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
106103, 104, 105mp2b 10 . . . . . . . . . . . . . . . . . 18 ran (ℕ × {0}) = {0}
107102, 106eqtri 2752 . . . . . . . . . . . . . . . . 17 ran seq1( + , (𝑚 ∈ ℕ ↦ 0)) = {0}
108107supeq1i 9374 . . . . . . . . . . . . . . . 16 sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ) = sup({0}, ℝ*, < )
109 xrltso 13077 . . . . . . . . . . . . . . . . 17 < Or ℝ*
110 0xr 11197 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
111 supsn 9400 . . . . . . . . . . . . . . . . 17 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
112109, 110, 111mp2an 692 . . . . . . . . . . . . . . . 16 sup({0}, ℝ*, < ) = 0
113108, 112eqtri 2752 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑚 ∈ ℕ ↦ 0)), ℝ*, < ) = 0
11480, 113eqtrdi 2780 . . . . . . . . . . . . . 14 (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = 0)
115114adantl 481 . . . . . . . . . . . . 13 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → sup(ran seq1( + , (𝑚 ∈ ℕ ↦ (vol*‘(𝑓𝑚)))), ℝ*, < ) = 0)
11662, 69, 1153brtr3d 5133 . . . . . . . . . . . 12 ((𝑓:ℕ–onto𝐴 ∧ ∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0)) → (vol*‘ 𝐴) ≤ 0)
117116ex 412 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → (∀𝑙 ∈ ℕ ((𝑓𝑙) ⊆ ℝ ∧ (vol*‘(𝑓𝑙)) = 0) → (vol*‘ 𝐴) ≤ 0))
11848, 117sylbid 240 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (vol*‘ 𝐴) ≤ 0))
119118exlimiv 1930 . . . . . . . . 9 (∃𝑓 𝑓:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (vol*‘ 𝐴) ≤ 0))
120119imp 406 . . . . . . . 8 ((∃𝑓 𝑓:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)) → (vol*‘ 𝐴) ≤ 0)
12116, 38, 120syl2an 596 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → (vol*‘ 𝐴) ≤ 0)
122 ovolcl 25412 . . . . . . . . 9 ( 𝐴 ⊆ ℝ → (vol*‘ 𝐴) ∈ ℝ*)
123 xrletri3 13090 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (vol*‘ 𝐴) ∈ ℝ*) → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
124110, 122, 123sylancr 587 . . . . . . . 8 ( 𝐴 ⊆ ℝ → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
125124ad2antll 729 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → (0 = (vol*‘ 𝐴) ↔ (0 ≤ (vol*‘ 𝐴) ∧ (vol*‘ 𝐴) ≤ 0)))
1269, 121, 125mpbir2and 713 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴))
127126expl 457 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴)))
1287, 127pm2.61ine 3008 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol*‘ 𝐴))
129 renepnf 11198 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
13055, 129mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
131 fveq2 6840 . . . . . . 7 ( 𝐴 = ℝ → (vol*‘ 𝐴) = (vol*‘ℝ))
132 ovolre 25459 . . . . . . 7 (vol*‘ℝ) = +∞
133131, 132eqtrdi 2780 . . . . . 6 ( 𝐴 = ℝ → (vol*‘ 𝐴) = +∞)
134130, 133neeqtrrd 2999 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol*‘ 𝐴))
135134necon2i 2959 . . . 4 (0 = (vol*‘ 𝐴) → 𝐴 ≠ ℝ)
136128, 135syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
137136expr 456 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
138 eqimss 4002 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
139138necon3bi 2951 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
140137, 139pm2.61d1 180 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3444  wss 3911  c0 4292  {csn 4585   cuni 4867   ciun 4951   class class class wbr 5102  cmpt 5183   Or wor 5538   × cxp 5629  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  ontowfo 6497  cfv 6499  (class class class)co 7369  ωcom 7822  cen 8892  cdom 8893  csdm 8894  Fincfn 8895  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cn 12162  cz 12505  cuz 12769  seqcseq 13942  vol*covol 25396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-cmp 23307  df-ovol 25398
This theorem is referenced by:  ex-ovoliunnfl  37650
  Copyright terms: Public domain W3C validator