Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunnfl Structured version   Visualization version   GIF version

Theorem voliunnfl 37650
Description: voliun 25602 is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017.)
Hypotheses
Ref Expression
voliunnfl.1 𝑆 = seq1( + , 𝐺)
voliunnfl.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))
voliunnfl.3 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))
Assertion
Ref Expression
voliunnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑥,𝐴
Allowed substitution hints:   𝑆(𝑥,𝑓,𝑛)   𝐺(𝑥,𝑓,𝑛)

Proof of Theorem voliunnfl
Dummy variables 𝑔 𝑚 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4922 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4939 . . . . . . . . 9 ∅ = ∅
31, 2eqtrdi 2790 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6910 . . . . . . 7 (𝐴 = ∅ → (vol‘ 𝐴) = (vol‘∅))
5 0mbl 25587 . . . . . . . . 9 ∅ ∈ dom vol
6 mblvol 25578 . . . . . . . . 9 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
75, 6ax-mp 5 . . . . . . . 8 (vol‘∅) = (vol*‘∅)
8 ovol0 25541 . . . . . . . 8 (vol*‘∅) = 0
97, 8eqtri 2762 . . . . . . 7 (vol‘∅) = 0
104, 9eqtr2di 2791 . . . . . 6 (𝐴 = ∅ → 0 = (vol‘ 𝐴))
1110a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
12 reldom 8989 . . . . . . . . . . 11 Rel ≼
1312brrelex1i 5744 . . . . . . . . . 10 (𝐴 ≼ ℕ → 𝐴 ∈ V)
14 0sdomg 9142 . . . . . . . . . 10 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1513, 14syl 17 . . . . . . . . 9 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1615biimparc 479 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
17 fodomr 9166 . . . . . . . 8 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
1816, 17sylancom 588 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
19 unissb 4943 . . . . . . . . . . . . 13 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
2019anbi1i 624 . . . . . . . . . . . 12 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
21 r19.26 3108 . . . . . . . . . . . 12 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2220, 21bitr4i 278 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
23 ovolctb2 25540 . . . . . . . . . . . . . 14 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (vol*‘𝑥) = 0)
2423ex 412 . . . . . . . . . . . . 13 (𝑥 ⊆ ℝ → (𝑥 ≼ ℕ → (vol*‘𝑥) = 0))
2524imdistani 568 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2625ralimi 3080 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2722, 26sylbi 217 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2827ancoms 458 . . . . . . . . 9 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
29 foima 6825 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → (𝑔 “ ℕ) = 𝐴)
3029raleqdv 3323 . . . . . . . . . . 11 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)))
31 fofn 6822 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
32 ssid 4017 . . . . . . . . . . . 12 ℕ ⊆ ℕ
33 sseq1 4020 . . . . . . . . . . . . . 14 (𝑥 = (𝑔𝑚) → (𝑥 ⊆ ℝ ↔ (𝑔𝑚) ⊆ ℝ))
34 fveqeq2 6915 . . . . . . . . . . . . . 14 (𝑥 = (𝑔𝑚) → ((vol*‘𝑥) = 0 ↔ (vol*‘(𝑔𝑚)) = 0))
3533, 34anbi12d 632 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑚) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3635ralima 7256 . . . . . . . . . . . 12 ((𝑔 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3731, 32, 36sylancl 586 . . . . . . . . . . 11 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3830, 37bitr3d 281 . . . . . . . . . 10 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
39 difss 4145 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ (𝑔𝑚)
40 ovolssnul 25535 . . . . . . . . . . . . . . . . . 18 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ (𝑔𝑚) ∧ (𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
4139, 40mp3an1 1447 . . . . . . . . . . . . . . . . 17 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
42 ssdifss 4149 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑚) ⊆ ℝ → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ)
43 nulmbl 25583 . . . . . . . . . . . . . . . . . . 19 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol)
44 mblvol 25578 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))))
4544eqeq1d 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → ((vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 ↔ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0))
4645biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
47 0re 11260 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ
4846, 47eqeltrdi 2846 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)
4948expcom 413 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5049ancld 550 . . . . . . . . . . . . . . . . . . . 20 ((vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
5150adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
5243, 51mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5342, 52sylan 580 . . . . . . . . . . . . . . . . 17 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5441, 53syldan 591 . . . . . . . . . . . . . . . 16 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5554ralimi 3080 . . . . . . . . . . . . . . 15 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
56 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
57 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (1..^𝑚) = (1..^𝑛))
5857iuneq1d 5023 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 𝑙 ∈ (1..^𝑚)(𝑔𝑙) = 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
5956, 58difeq12d 4136 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
60 eqid 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))
61 fvex 6919 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝑛) ∈ V
62 difexg 5334 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔𝑛) ∈ V → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ V)
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ V
6459, 60, 63fvmpt 7015 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
6564eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ↔ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol))
6664fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
6766eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ ↔ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ))
6865, 67anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ)))
6968ralbiia 3088 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ ∀𝑛 ∈ ℕ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ))
70 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
71 oveq2 7438 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
7271iuneq1d 5023 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 𝑙 ∈ (1..^𝑛)(𝑔𝑙) = 𝑙 ∈ (1..^𝑚)(𝑔𝑙))
7370, 72difeq12d 4136 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))
7473eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ↔ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol))
7573fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))))
7675eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → ((vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ ↔ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
7774, 76anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ) ↔ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
7877cbvralvw 3234 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ) ↔ ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
7969, 78bitri 275 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
8055, 79sylibr 234 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ))
81 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑙 → (𝑔𝑛) = (𝑔𝑙))
8281iundisj2 25597 . . . . . . . . . . . . . . 15 Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
83 disjeq2 5118 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) → (Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
8483, 64mprg 3064 . . . . . . . . . . . . . . 15 (Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
8582, 84mpbir 231 . . . . . . . . . . . . . 14 Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)
86 nnex 12269 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
8786mptex 7242 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ V
88 fveq1 6905 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
8988eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((𝑓𝑛) ∈ dom vol ↔ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol))
9088fveq2d 6910 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (vol‘(𝑓𝑛)) = (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
9190eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((vol‘(𝑓𝑛)) ∈ ℝ ↔ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ))
9289, 91anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ↔ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ)))
9392ralbidv 3175 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ↔ ∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ)))
9488adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
9594disjeq2dv 5119 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (Disj 𝑛 ∈ ℕ (𝑓𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
9693, 95anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) ↔ (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))))
9788iuneq2d 5026 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
9897fveq2d 6910 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
99 voliunnfl.1 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = seq1( + , 𝐺)
100 voliunnfl.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))
101 seqeq3 14043 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))))
102100, 101ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
10399, 102eqtri 2762 . . . . . . . . . . . . . . . . . . . . 21 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
104103rneqi 5950 . . . . . . . . . . . . . . . . . . . 20 ran 𝑆 = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
105104supeq1i 9484 . . . . . . . . . . . . . . . . . . 19 sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))), ℝ*, < )
10690mpteq2dv 5249 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))))
107106seqeq3d 14046 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))))
108107rneqd 5951 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))) = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))))
109108supeq1d 9483 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
110105, 109eqtrid 2786 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
11198, 110eqeq12d 2750 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ) ↔ (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < )))
11296, 111imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < )) ↔ ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))))
113 voliunnfl.3 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))
11487, 112, 113vtocl 3557 . . . . . . . . . . . . . . 15 ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
11564iuneq2i 5017 . . . . . . . . . . . . . . . 16 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
116115fveq2i 6909 . . . . . . . . . . . . . . 15 (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
11766mpteq2ia 5250 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
118 seqeq3 14043 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))))
119117, 118ax-mp 5 . . . . . . . . . . . . . . . . 17 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))))
120119rneqi 5950 . . . . . . . . . . . . . . . 16 ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))))
121120supeq1i 9484 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < )
122114, 116, 1213eqtr3g 2797 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
12380, 85, 122sylancl 586 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
124123adantl 481 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
12581iundisj 25596 . . . . . . . . . . . . . . . 16 𝑛 ∈ ℕ (𝑔𝑛) = 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
126 fofun 6821 . . . . . . . . . . . . . . . . 17 (𝑔:ℕ–onto𝐴 → Fun 𝑔)
127 funiunfv 7267 . . . . . . . . . . . . . . . . 17 (Fun 𝑔 𝑛 ∈ ℕ (𝑔𝑛) = (𝑔 “ ℕ))
128126, 127syl 17 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑔𝑛) = (𝑔 “ ℕ))
129125, 128eqtr3id 2788 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = (𝑔 “ ℕ))
13029unieqd 4924 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 (𝑔 “ ℕ) = 𝐴)
131129, 130eqtrd 2774 . . . . . . . . . . . . . 14 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = 𝐴)
132131fveq2d 6910 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝐴 → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘ 𝐴))
133132adantr 480 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘ 𝐴))
13456sseq1d 4026 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((𝑔𝑚) ⊆ ℝ ↔ (𝑔𝑛) ⊆ ℝ))
13556fveqeq2d 6914 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((vol*‘(𝑔𝑚)) = 0 ↔ (vol*‘(𝑔𝑛)) = 0))
136134, 135anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ↔ ((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0)))
137136rspccva 3620 . . . . . . . . . . . . . . . . . . 19 ((∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0))
138 ssdifss 4149 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑛) ⊆ ℝ → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ)
139138adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ)
140 difss 4145 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ (𝑔𝑛)
141 ovolssnul 25535 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ (𝑔𝑛) ∧ (𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
142140, 141mp3an1 1447 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
143139, 142jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0))
144 nulmbl 25583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0) → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol)
145 mblvol 25578 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
146143, 144, 1453syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
147146, 142eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
148137, 147syl 17 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ∧ 𝑛 ∈ ℕ) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
149148mpteq2dva 5247 . . . . . . . . . . . . . . . . 17 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))) = (𝑛 ∈ ℕ ↦ 0))
150149seqeq3d 14046 . . . . . . . . . . . . . . . 16 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))) = seq1( + , (𝑛 ∈ ℕ ↦ 0)))
151150rneqd 5951 . . . . . . . . . . . . . . 15 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))) = ran seq1( + , (𝑛 ∈ ℕ ↦ 0)))
152151supeq1d 9483 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ))
153 0cn 11250 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
154 ser1const 14095 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℂ ∧ 𝑚 ∈ ℕ) → (seq1( + , (ℕ × {0}))‘𝑚) = (𝑚 · 0))
155153, 154mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑚) = (𝑚 · 0))
156 nncn 12271 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
157156mul01d 11457 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → (𝑚 · 0) = 0)
158155, 157eqtrd 2774 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑚) = 0)
159158mpteq2ia 5250 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)) = (𝑚 ∈ ℕ ↦ 0)
160 fconstmpt 5750 . . . . . . . . . . . . . . . . . . . . 21 (ℕ × {0}) = (𝑛 ∈ ℕ ↦ 0)
161 seqeq3 14043 . . . . . . . . . . . . . . . . . . . . 21 ((ℕ × {0}) = (𝑛 ∈ ℕ ↦ 0) → seq1( + , (ℕ × {0})) = seq1( + , (𝑛 ∈ ℕ ↦ 0)))
162160, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (ℕ × {0})) = seq1( + , (𝑛 ∈ ℕ ↦ 0))
163 1z 12644 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℤ
164 seqfn 14050 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℤ → seq1( + , (ℕ × {0})) Fn (ℤ‘1))
165163, 164ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) Fn (ℤ‘1)
166 nnuz 12918 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ = (ℤ‘1)
167166fneq2i 6666 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) Fn (ℤ‘1))
168 dffn5 6966 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)))
169167, 168bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21 (seq1( + , (ℕ × {0})) Fn (ℤ‘1) ↔ seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)))
170165, 169mpbi 230 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚))
171162, 170eqtr3i 2764 . . . . . . . . . . . . . . . . . . 19 seq1( + , (𝑛 ∈ ℕ ↦ 0)) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚))
172 fconstmpt 5750 . . . . . . . . . . . . . . . . . . 19 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
173159, 171, 1723eqtr4i 2772 . . . . . . . . . . . . . . . . . 18 seq1( + , (𝑛 ∈ ℕ ↦ 0)) = (ℕ × {0})
174173rneqi 5950 . . . . . . . . . . . . . . . . 17 ran seq1( + , (𝑛 ∈ ℕ ↦ 0)) = ran (ℕ × {0})
175 1nn 12274 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
176 ne0i 4346 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℕ → ℕ ≠ ∅)
177 rnxp 6191 . . . . . . . . . . . . . . . . . 18 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
178175, 176, 177mp2b 10 . . . . . . . . . . . . . . . . 17 ran (ℕ × {0}) = {0}
179174, 178eqtri 2762 . . . . . . . . . . . . . . . 16 ran seq1( + , (𝑛 ∈ ℕ ↦ 0)) = {0}
180179supeq1i 9484 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ) = sup({0}, ℝ*, < )
181 xrltso 13179 . . . . . . . . . . . . . . . 16 < Or ℝ*
182 0xr 11305 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
183 supsn 9509 . . . . . . . . . . . . . . . 16 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
184181, 182, 183mp2an 692 . . . . . . . . . . . . . . 15 sup({0}, ℝ*, < ) = 0
185180, 184eqtri 2762 . . . . . . . . . . . . . 14 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ) = 0
186152, 185eqtrdi 2790 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = 0)
187186adantl 481 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = 0)
188124, 133, 1873eqtr3rd 2783 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → 0 = (vol‘ 𝐴))
189188ex 412 . . . . . . . . . 10 (𝑔:ℕ–onto𝐴 → (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → 0 = (vol‘ 𝐴)))
19038, 189sylbid 240 . . . . . . . . 9 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → 0 = (vol‘ 𝐴)))
19128, 190syl5 34 . . . . . . . 8 (𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
192191exlimiv 1927 . . . . . . 7 (∃𝑔 𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
19318, 192syl 17 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
194193expimpd 453 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
19511, 194pm2.61ine 3022 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴))
196 renepnf 11306 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
19747, 196mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
198 fveq2 6906 . . . . . . 7 ( 𝐴 = ℝ → (vol‘ 𝐴) = (vol‘ℝ))
199 rembl 25588 . . . . . . . . 9 ℝ ∈ dom vol
200 mblvol 25578 . . . . . . . . 9 (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ))
201199, 200ax-mp 5 . . . . . . . 8 (vol‘ℝ) = (vol*‘ℝ)
202 ovolre 25573 . . . . . . . 8 (vol*‘ℝ) = +∞
203201, 202eqtri 2762 . . . . . . 7 (vol‘ℝ) = +∞
204198, 203eqtrdi 2790 . . . . . 6 ( 𝐴 = ℝ → (vol‘ 𝐴) = +∞)
205197, 204neeqtrrd 3012 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol‘ 𝐴))
206205necon2i 2972 . . . 4 (0 = (vol‘ 𝐴) → 𝐴 ≠ ℝ)
207195, 206syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
208207expr 456 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
209 eqimss 4053 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
210209necon3bi 2964 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
211208, 210pm2.61d1 180 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  Vcvv 3477  cdif 3959  wss 3962  c0 4338  {csn 4630   cuni 4911   ciun 4995  Disj wdisj 5114   class class class wbr 5147  cmpt 5230   Or wor 5595   × cxp 5686  dom cdm 5688  ran crn 5689  cima 5691  Fun wfun 6556   Fn wfn 6557  ontowfo 6560  cfv 6562  (class class class)co 7430  cdom 8981  csdm 8982  supcsup 9477  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cn 12263  cz 12610  cuz 12875  ..^cfzo 13690  seqcseq 14038  vol*covol 25510  volcvol 25511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-ovol 25512  df-vol 25513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator