Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunnfl Structured version   Visualization version   GIF version

Theorem voliunnfl 34822
Description: voliun 24089 is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017.)
Hypotheses
Ref Expression
voliunnfl.1 𝑆 = seq1( + , 𝐺)
voliunnfl.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))
voliunnfl.3 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))
Assertion
Ref Expression
voliunnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑥,𝐴
Allowed substitution hints:   𝑆(𝑥,𝑓,𝑛)   𝐺(𝑥,𝑓,𝑛)

Proof of Theorem voliunnfl
Dummy variables 𝑔 𝑚 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4845 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4864 . . . . . . . . 9 ∅ = ∅
31, 2syl6eq 2877 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6673 . . . . . . 7 (𝐴 = ∅ → (vol‘ 𝐴) = (vol‘∅))
5 0mbl 24074 . . . . . . . . 9 ∅ ∈ dom vol
6 mblvol 24065 . . . . . . . . 9 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
75, 6ax-mp 5 . . . . . . . 8 (vol‘∅) = (vol*‘∅)
8 ovol0 24028 . . . . . . . 8 (vol*‘∅) = 0
97, 8eqtri 2849 . . . . . . 7 (vol‘∅) = 0
104, 9syl6req 2878 . . . . . 6 (𝐴 = ∅ → 0 = (vol‘ 𝐴))
1110a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
12 reldom 8509 . . . . . . . . . . 11 Rel ≼
1312brrelex1i 5607 . . . . . . . . . 10 (𝐴 ≼ ℕ → 𝐴 ∈ V)
14 0sdomg 8640 . . . . . . . . . 10 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1513, 14syl 17 . . . . . . . . 9 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1615biimparc 480 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
17 fodomr 8662 . . . . . . . 8 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
1816, 17sylancom 588 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
19 unissb 4868 . . . . . . . . . . . . 13 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
2019anbi1i 623 . . . . . . . . . . . 12 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
21 r19.26 3175 . . . . . . . . . . . 12 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2220, 21bitr4i 279 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
23 ovolctb2 24027 . . . . . . . . . . . . . 14 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (vol*‘𝑥) = 0)
2423ex 413 . . . . . . . . . . . . 13 (𝑥 ⊆ ℝ → (𝑥 ≼ ℕ → (vol*‘𝑥) = 0))
2524imdistani 569 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2625ralimi 3165 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2722, 26sylbi 218 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2827ancoms 459 . . . . . . . . 9 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
29 foima 6594 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → (𝑔 “ ℕ) = 𝐴)
3029raleqdv 3421 . . . . . . . . . . 11 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)))
31 fofn 6591 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
32 ssid 3993 . . . . . . . . . . . 12 ℕ ⊆ ℕ
33 sseq1 3996 . . . . . . . . . . . . . 14 (𝑥 = (𝑔𝑚) → (𝑥 ⊆ ℝ ↔ (𝑔𝑚) ⊆ ℝ))
34 fveqeq2 6678 . . . . . . . . . . . . . 14 (𝑥 = (𝑔𝑚) → ((vol*‘𝑥) = 0 ↔ (vol*‘(𝑔𝑚)) = 0))
3533, 34anbi12d 630 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑚) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3635ralima 6996 . . . . . . . . . . . 12 ((𝑔 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3731, 32, 36sylancl 586 . . . . . . . . . . 11 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3830, 37bitr3d 282 . . . . . . . . . 10 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
39 difss 4112 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ (𝑔𝑚)
40 ovolssnul 24022 . . . . . . . . . . . . . . . . . 18 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ (𝑔𝑚) ∧ (𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
4139, 40mp3an1 1441 . . . . . . . . . . . . . . . . 17 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
42 ssdifss 4116 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑚) ⊆ ℝ → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ)
43 nulmbl 24070 . . . . . . . . . . . . . . . . . . 19 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol)
44 mblvol 24065 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))))
4544eqeq1d 2828 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → ((vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 ↔ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0))
4645biimpar 478 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
47 0re 10637 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ
4846, 47syl6eqel 2926 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)
4948expcom 414 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5049ancld 551 . . . . . . . . . . . . . . . . . . . 20 ((vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
5150adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
5243, 51mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5342, 52sylan 580 . . . . . . . . . . . . . . . . 17 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5441, 53syldan 591 . . . . . . . . . . . . . . . 16 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5554ralimi 3165 . . . . . . . . . . . . . . 15 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
56 fveq2 6669 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
57 oveq2 7158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (1..^𝑚) = (1..^𝑛))
5857iuneq1d 4943 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 𝑙 ∈ (1..^𝑚)(𝑔𝑙) = 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
5956, 58difeq12d 4104 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
60 eqid 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))
61 fvex 6682 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝑛) ∈ V
62 difexg 5228 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔𝑛) ∈ V → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ V)
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ V
6459, 60, 63fvmpt 6767 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
6564eleq1d 2902 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ↔ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol))
6664fveq2d 6673 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
6766eleq1d 2902 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ ↔ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ))
6865, 67anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ)))
6968ralbiia 3169 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ ∀𝑛 ∈ ℕ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ))
70 fveq2 6669 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
71 oveq2 7158 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
7271iuneq1d 4943 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 𝑙 ∈ (1..^𝑛)(𝑔𝑙) = 𝑙 ∈ (1..^𝑚)(𝑔𝑙))
7370, 72difeq12d 4104 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))
7473eleq1d 2902 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ↔ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol))
7573fveq2d 6673 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))))
7675eleq1d 2902 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → ((vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ ↔ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
7774, 76anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ) ↔ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
7877cbvralv 3458 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ) ↔ ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
7969, 78bitri 276 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
8055, 79sylibr 235 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ))
81 fveq2 6669 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑙 → (𝑔𝑛) = (𝑔𝑙))
8281iundisj2 24084 . . . . . . . . . . . . . . 15 Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
83 disjeq2 5032 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) → (Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
8483, 64mprg 3157 . . . . . . . . . . . . . . 15 (Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
8582, 84mpbir 232 . . . . . . . . . . . . . 14 Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)
86 nnex 11638 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
8786mptex 6983 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ V
88 fveq1 6668 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
8988eleq1d 2902 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((𝑓𝑛) ∈ dom vol ↔ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol))
9088fveq2d 6673 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (vol‘(𝑓𝑛)) = (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
9190eleq1d 2902 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((vol‘(𝑓𝑛)) ∈ ℝ ↔ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ))
9289, 91anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ↔ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ)))
9392ralbidv 3202 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ↔ ∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ)))
9488adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
9594disjeq2dv 5033 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (Disj 𝑛 ∈ ℕ (𝑓𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
9693, 95anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) ↔ (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))))
9788iuneq2d 4945 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
9897fveq2d 6673 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
99 voliunnfl.1 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = seq1( + , 𝐺)
100 voliunnfl.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))
101 seqeq3 13369 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))))
102100, 101ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
10399, 102eqtri 2849 . . . . . . . . . . . . . . . . . . . . 21 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
104103rneqi 5806 . . . . . . . . . . . . . . . . . . . 20 ran 𝑆 = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
105104supeq1i 8905 . . . . . . . . . . . . . . . . . . 19 sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))), ℝ*, < )
10690mpteq2dv 5159 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))))
107106seqeq3d 13372 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))))
108107rneqd 5807 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))) = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))))
109108supeq1d 8904 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
110105, 109syl5eq 2873 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
11198, 110eqeq12d 2842 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ) ↔ (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < )))
11296, 111imbi12d 346 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < )) ↔ ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))))
113 voliunnfl.3 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))
11487, 112, 113vtocl 3565 . . . . . . . . . . . . . . 15 ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
11564iuneq2i 4937 . . . . . . . . . . . . . . . 16 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
116115fveq2i 6672 . . . . . . . . . . . . . . 15 (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
11766mpteq2ia 5154 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
118 seqeq3 13369 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))))
119117, 118ax-mp 5 . . . . . . . . . . . . . . . . 17 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))))
120119rneqi 5806 . . . . . . . . . . . . . . . 16 ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))))
121120supeq1i 8905 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < )
122114, 116, 1213eqtr3g 2884 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
12380, 85, 122sylancl 586 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
124123adantl 482 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
12581iundisj 24083 . . . . . . . . . . . . . . . 16 𝑛 ∈ ℕ (𝑔𝑛) = 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
126 fofun 6590 . . . . . . . . . . . . . . . . 17 (𝑔:ℕ–onto𝐴 → Fun 𝑔)
127 funiunfv 7003 . . . . . . . . . . . . . . . . 17 (Fun 𝑔 𝑛 ∈ ℕ (𝑔𝑛) = (𝑔 “ ℕ))
128126, 127syl 17 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑔𝑛) = (𝑔 “ ℕ))
129125, 128syl5eqr 2875 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = (𝑔 “ ℕ))
13029unieqd 4847 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 (𝑔 “ ℕ) = 𝐴)
131129, 130eqtrd 2861 . . . . . . . . . . . . . 14 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = 𝐴)
132131fveq2d 6673 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝐴 → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘ 𝐴))
133132adantr 481 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘ 𝐴))
13456sseq1d 4002 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((𝑔𝑚) ⊆ ℝ ↔ (𝑔𝑛) ⊆ ℝ))
13556fveqeq2d 6677 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((vol*‘(𝑔𝑚)) = 0 ↔ (vol*‘(𝑔𝑛)) = 0))
136134, 135anbi12d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ↔ ((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0)))
137136rspccva 3626 . . . . . . . . . . . . . . . . . . 19 ((∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0))
138 ssdifss 4116 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑛) ⊆ ℝ → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ)
139138adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ)
140 difss 4112 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ (𝑔𝑛)
141 ovolssnul 24022 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ (𝑔𝑛) ∧ (𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
142140, 141mp3an1 1441 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
143139, 142jca 512 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0))
144 nulmbl 24070 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0) → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol)
145 mblvol 24065 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
146143, 144, 1453syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
147146, 142eqtrd 2861 . . . . . . . . . . . . . . . . . . 19 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
148137, 147syl 17 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ∧ 𝑛 ∈ ℕ) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
149148mpteq2dva 5158 . . . . . . . . . . . . . . . . 17 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))) = (𝑛 ∈ ℕ ↦ 0))
150149seqeq3d 13372 . . . . . . . . . . . . . . . 16 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))) = seq1( + , (𝑛 ∈ ℕ ↦ 0)))
151150rneqd 5807 . . . . . . . . . . . . . . 15 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))) = ran seq1( + , (𝑛 ∈ ℕ ↦ 0)))
152151supeq1d 8904 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ))
153 0cn 10627 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
154 ser1const 13421 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℂ ∧ 𝑚 ∈ ℕ) → (seq1( + , (ℕ × {0}))‘𝑚) = (𝑚 · 0))
155153, 154mpan 686 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑚) = (𝑚 · 0))
156 nncn 11640 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
157156mul01d 10833 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → (𝑚 · 0) = 0)
158155, 157eqtrd 2861 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑚) = 0)
159158mpteq2ia 5154 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)) = (𝑚 ∈ ℕ ↦ 0)
160 fconstmpt 5613 . . . . . . . . . . . . . . . . . . . . 21 (ℕ × {0}) = (𝑛 ∈ ℕ ↦ 0)
161 seqeq3 13369 . . . . . . . . . . . . . . . . . . . . 21 ((ℕ × {0}) = (𝑛 ∈ ℕ ↦ 0) → seq1( + , (ℕ × {0})) = seq1( + , (𝑛 ∈ ℕ ↦ 0)))
162160, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (ℕ × {0})) = seq1( + , (𝑛 ∈ ℕ ↦ 0))
163 1z 12006 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℤ
164 seqfn 13376 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℤ → seq1( + , (ℕ × {0})) Fn (ℤ‘1))
165163, 164ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) Fn (ℤ‘1)
166 nnuz 12275 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ = (ℤ‘1)
167166fneq2i 6450 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) Fn (ℤ‘1))
168 dffn5 6723 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)))
169167, 168bitr3i 278 . . . . . . . . . . . . . . . . . . . . 21 (seq1( + , (ℕ × {0})) Fn (ℤ‘1) ↔ seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)))
170165, 169mpbi 231 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚))
171162, 170eqtr3i 2851 . . . . . . . . . . . . . . . . . . 19 seq1( + , (𝑛 ∈ ℕ ↦ 0)) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚))
172 fconstmpt 5613 . . . . . . . . . . . . . . . . . . 19 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
173159, 171, 1723eqtr4i 2859 . . . . . . . . . . . . . . . . . 18 seq1( + , (𝑛 ∈ ℕ ↦ 0)) = (ℕ × {0})
174173rneqi 5806 . . . . . . . . . . . . . . . . 17 ran seq1( + , (𝑛 ∈ ℕ ↦ 0)) = ran (ℕ × {0})
175 1nn 11643 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
176 ne0i 4304 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℕ → ℕ ≠ ∅)
177 rnxp 6026 . . . . . . . . . . . . . . . . . 18 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
178175, 176, 177mp2b 10 . . . . . . . . . . . . . . . . 17 ran (ℕ × {0}) = {0}
179174, 178eqtri 2849 . . . . . . . . . . . . . . . 16 ran seq1( + , (𝑛 ∈ ℕ ↦ 0)) = {0}
180179supeq1i 8905 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ) = sup({0}, ℝ*, < )
181 xrltso 12529 . . . . . . . . . . . . . . . 16 < Or ℝ*
182 0xr 10682 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
183 supsn 8930 . . . . . . . . . . . . . . . 16 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
184181, 182, 183mp2an 688 . . . . . . . . . . . . . . 15 sup({0}, ℝ*, < ) = 0
185180, 184eqtri 2849 . . . . . . . . . . . . . 14 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ) = 0
186152, 185syl6eq 2877 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = 0)
187186adantl 482 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = 0)
188124, 133, 1873eqtr3rd 2870 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → 0 = (vol‘ 𝐴))
189188ex 413 . . . . . . . . . 10 (𝑔:ℕ–onto𝐴 → (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → 0 = (vol‘ 𝐴)))
19038, 189sylbid 241 . . . . . . . . 9 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → 0 = (vol‘ 𝐴)))
19128, 190syl5 34 . . . . . . . 8 (𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
192191exlimiv 1924 . . . . . . 7 (∃𝑔 𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
19318, 192syl 17 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
194193expimpd 454 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
19511, 194pm2.61ine 3105 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴))
196 renepnf 10683 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
19747, 196mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
198 fveq2 6669 . . . . . . 7 ( 𝐴 = ℝ → (vol‘ 𝐴) = (vol‘ℝ))
199 rembl 24075 . . . . . . . . 9 ℝ ∈ dom vol
200 mblvol 24065 . . . . . . . . 9 (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ))
201199, 200ax-mp 5 . . . . . . . 8 (vol‘ℝ) = (vol*‘ℝ)
202 ovolre 24060 . . . . . . . 8 (vol*‘ℝ) = +∞
203201, 202eqtri 2849 . . . . . . 7 (vol‘ℝ) = +∞
204198, 203syl6eq 2877 . . . . . 6 ( 𝐴 = ℝ → (vol‘ 𝐴) = +∞)
205197, 204neeqtrrd 3095 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol‘ 𝐴))
206205necon2i 3055 . . . 4 (0 = (vol‘ 𝐴) → 𝐴 ≠ ℝ)
207195, 206syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
208207expr 457 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
209 eqimss 4027 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
210209necon3bi 3047 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
211208, 210pm2.61d1 181 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2107  wne 3021  wral 3143  Vcvv 3500  cdif 3937  wss 3940  c0 4295  {csn 4564   cuni 4837   ciun 4917  Disj wdisj 5028   class class class wbr 5063  cmpt 5143   Or wor 5472   × cxp 5552  dom cdm 5554  ran crn 5555  cima 5557  Fun wfun 6348   Fn wfn 6349  ontowfo 6352  cfv 6354  (class class class)co 7150  cdom 8501  csdm 8502  supcsup 8898  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cn 11632  cz 11975  cuz 12237  ..^cfzo 13028  seqcseq 13364  vol*covol 23997  volcvol 23998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-disj 5029  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-rest 16691  df-topgen 16712  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-top 21437  df-topon 21454  df-bases 21489  df-cmp 21930  df-ovol 23999  df-vol 24000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator