Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliunnfl Structured version   Visualization version   GIF version

Theorem voliunnfl 37703
Description: voliun 25482 is incompatible with the Feferman-Levy model; in that model, therefore, the Lebesgue measure as we've defined it isn't actually a measure. (Contributed by Brendan Leahy, 16-Dec-2017.)
Hypotheses
Ref Expression
voliunnfl.1 𝑆 = seq1( + , 𝐺)
voliunnfl.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))
voliunnfl.3 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))
Assertion
Ref Expression
voliunnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑥,𝐴
Allowed substitution hints:   𝑆(𝑥,𝑓,𝑛)   𝐺(𝑥,𝑓,𝑛)

Proof of Theorem voliunnfl
Dummy variables 𝑔 𝑚 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4867 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4884 . . . . . . . . 9 ∅ = ∅
31, 2eqtrdi 2782 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6826 . . . . . . 7 (𝐴 = ∅ → (vol‘ 𝐴) = (vol‘∅))
5 0mbl 25467 . . . . . . . . 9 ∅ ∈ dom vol
6 mblvol 25458 . . . . . . . . 9 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
75, 6ax-mp 5 . . . . . . . 8 (vol‘∅) = (vol*‘∅)
8 ovol0 25421 . . . . . . . 8 (vol*‘∅) = 0
97, 8eqtri 2754 . . . . . . 7 (vol‘∅) = 0
104, 9eqtr2di 2783 . . . . . 6 (𝐴 = ∅ → 0 = (vol‘ 𝐴))
1110a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
12 reldom 8875 . . . . . . . . . . 11 Rel ≼
1312brrelex1i 5670 . . . . . . . . . 10 (𝐴 ≼ ℕ → 𝐴 ∈ V)
14 0sdomg 9019 . . . . . . . . . 10 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1513, 14syl 17 . . . . . . . . 9 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1615biimparc 479 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
17 fodomr 9041 . . . . . . . 8 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
1816, 17sylancom 588 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
19 unissb 4889 . . . . . . . . . . . . 13 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
2019anbi1i 624 . . . . . . . . . . . 12 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
21 r19.26 3092 . . . . . . . . . . . 12 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2220, 21bitr4i 278 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
23 ovolctb2 25420 . . . . . . . . . . . . . 14 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (vol*‘𝑥) = 0)
2423ex 412 . . . . . . . . . . . . 13 (𝑥 ⊆ ℝ → (𝑥 ≼ ℕ → (vol*‘𝑥) = 0))
2524imdistani 568 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2625ralimi 3069 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2722, 26sylbi 217 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
2827ancoms 458 . . . . . . . . 9 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0))
29 foima 6740 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → (𝑔 “ ℕ) = 𝐴)
3029raleqdv 3292 . . . . . . . . . . 11 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0)))
31 fofn 6737 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
32 ssid 3952 . . . . . . . . . . . 12 ℕ ⊆ ℕ
33 sseq1 3955 . . . . . . . . . . . . . 14 (𝑥 = (𝑔𝑚) → (𝑥 ⊆ ℝ ↔ (𝑔𝑚) ⊆ ℝ))
34 fveqeq2 6831 . . . . . . . . . . . . . 14 (𝑥 = (𝑔𝑚) → ((vol*‘𝑥) = 0 ↔ (vol*‘(𝑔𝑚)) = 0))
3533, 34anbi12d 632 . . . . . . . . . . . . 13 (𝑥 = (𝑔𝑚) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3635ralima 7171 . . . . . . . . . . . 12 ((𝑔 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3731, 32, 36sylancl 586 . . . . . . . . . . 11 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
3830, 37bitr3d 281 . . . . . . . . . 10 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) ↔ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)))
39 difss 4083 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ (𝑔𝑚)
40 ovolssnul 25415 . . . . . . . . . . . . . . . . . 18 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ (𝑔𝑚) ∧ (𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
4139, 40mp3an1 1450 . . . . . . . . . . . . . . . . 17 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
42 ssdifss 4087 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑚) ⊆ ℝ → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ)
43 nulmbl 25463 . . . . . . . . . . . . . . . . . . 19 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol)
44 mblvol 25458 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))))
4544eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → ((vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 ↔ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0))
4645biimpar 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0)
47 0re 11114 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ
4846, 47eqeltrdi 2839 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)
4948expcom 413 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5049ancld 550 . . . . . . . . . . . . . . . . . . . 20 ((vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0 → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
5150adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
5243, 51mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5342, 52sylan 580 . . . . . . . . . . . . . . . . 17 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5441, 53syldan 591 . . . . . . . . . . . . . . . 16 (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
5554ralimi 3069 . . . . . . . . . . . . . . 15 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
56 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
57 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (1..^𝑚) = (1..^𝑛))
5857iuneq1d 4967 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 𝑙 ∈ (1..^𝑚)(𝑔𝑙) = 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
5956, 58difeq12d 4074 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
60 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))
61 fvex 6835 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝑛) ∈ V
62 difexg 5265 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔𝑛) ∈ V → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ V)
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ V
6459, 60, 63fvmpt 6929 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
6564eleq1d 2816 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ↔ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol))
6664fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
6766eleq1d 2816 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ ↔ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ))
6865, 67anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ)))
6968ralbiia 3076 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ ∀𝑛 ∈ ℕ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ))
70 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
71 oveq2 7354 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (1..^𝑛) = (1..^𝑚))
7271iuneq1d 4967 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑚 𝑙 ∈ (1..^𝑛)(𝑔𝑙) = 𝑙 ∈ (1..^𝑚)(𝑔𝑙))
7370, 72difeq12d 4074 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))
7473eleq1d 2816 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ↔ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol))
7573fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))))
7675eleq1d 2816 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → ((vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ ↔ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
7774, 76anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ) ↔ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ)))
7877cbvralvw 3210 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) ∈ ℝ) ↔ ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
7969, 78bitri 275 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ↔ ∀𝑚 ∈ ℕ (((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)) ∈ dom vol ∧ (vol‘((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ ℝ))
8055, 79sylibr 234 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ))
81 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑙 → (𝑔𝑛) = (𝑔𝑙))
8281iundisj2 25477 . . . . . . . . . . . . . . 15 Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
83 disjeq2 5060 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) → (Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
8483, 64mprg 3053 . . . . . . . . . . . . . . 15 (Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
8582, 84mpbir 231 . . . . . . . . . . . . . 14 Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)
86 nnex 12131 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
8786mptex 7157 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∈ V
88 fveq1 6821 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
8988eleq1d 2816 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((𝑓𝑛) ∈ dom vol ↔ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol))
9088fveq2d 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (vol‘(𝑓𝑛)) = (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
9190eleq1d 2816 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((vol‘(𝑓𝑛)) ∈ ℝ ↔ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ))
9289, 91anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ↔ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ)))
9392ralbidv 3155 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ↔ ∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ)))
9488adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
9594disjeq2dv 5061 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (Disj 𝑛 ∈ ℕ (𝑓𝑛) ↔ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
9693, 95anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) ↔ (∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))))
9788iuneq2d 4970 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))
9897fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))
99 voliunnfl.1 . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = seq1( + , 𝐺)
100 voliunnfl.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))
101 seqeq3 13913 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))))
102100, 101ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
10399, 102eqtri 2754 . . . . . . . . . . . . . . . . . . . . 21 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
104103rneqi 5876 . . . . . . . . . . . . . . . . . . . 20 ran 𝑆 = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))))
105104supeq1i 9331 . . . . . . . . . . . . . . . . . . 19 sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))), ℝ*, < )
10690mpteq2dv 5183 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))))
107106seqeq3d 13916 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))))
108107rneqd 5877 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))) = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))))
109108supeq1d 9330 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘(𝑓𝑛)))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
110105, 109eqtrid 2778 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
11198, 110eqeq12d 2747 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → ((vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ) ↔ (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < )))
11296, 111imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙))) → (((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < )) ↔ ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))))
113 voliunnfl.3 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ((𝑓𝑛) ∈ dom vol ∧ (vol‘(𝑓𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑓𝑛)) = sup(ran 𝑆, ℝ*, < ))
11487, 112, 113vtocl 3511 . . . . . . . . . . . . . . 15 ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ))
11564iuneq2i 4961 . . . . . . . . . . . . . . . 16 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) = 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
116115fveq2i 6825 . . . . . . . . . . . . . . 15 (vol‘ 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) = (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))
11766mpteq2ia 5184 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
118 seqeq3 13913 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))))
119117, 118ax-mp 5 . . . . . . . . . . . . . . . . 17 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))))
120119rneqi 5876 . . . . . . . . . . . . . . . 16 ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))) = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))))
121120supeq1i 9331 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < )
122114, 116, 1213eqtr3g 2789 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ ℕ (((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛) ∈ dom vol ∧ (vol‘((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ ((𝑔𝑚) ∖ 𝑙 ∈ (1..^𝑚)(𝑔𝑙)))‘𝑛)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
12380, 85, 122sylancl 586 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
124123adantl 481 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ))
12581iundisj 25476 . . . . . . . . . . . . . . . 16 𝑛 ∈ ℕ (𝑔𝑛) = 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))
126 fofun 6736 . . . . . . . . . . . . . . . . 17 (𝑔:ℕ–onto𝐴 → Fun 𝑔)
127 funiunfv 7182 . . . . . . . . . . . . . . . . 17 (Fun 𝑔 𝑛 ∈ ℕ (𝑔𝑛) = (𝑔 “ ℕ))
128126, 127syl 17 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑔𝑛) = (𝑔 “ ℕ))
129125, 128eqtr3id 2780 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = (𝑔 “ ℕ))
13029unieqd 4869 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 (𝑔 “ ℕ) = 𝐴)
131129, 130eqtrd 2766 . . . . . . . . . . . . . 14 (𝑔:ℕ–onto𝐴 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) = 𝐴)
132131fveq2d 6826 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝐴 → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘ 𝐴))
133132adantr 480 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → (vol‘ 𝑛 ∈ ℕ ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol‘ 𝐴))
13456sseq1d 3961 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((𝑔𝑚) ⊆ ℝ ↔ (𝑔𝑛) ⊆ ℝ))
13556fveqeq2d 6830 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((vol*‘(𝑔𝑚)) = 0 ↔ (vol*‘(𝑔𝑛)) = 0))
136134, 135anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ↔ ((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0)))
137136rspccva 3571 . . . . . . . . . . . . . . . . . . 19 ((∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0))
138 ssdifss 4087 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑛) ⊆ ℝ → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ)
139138adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ)
140 difss 4083 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ (𝑔𝑛)
141 ovolssnul 25415 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ (𝑔𝑛) ∧ (𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
142140, 141mp3an1 1450 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
143139, 142jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0))
144 nulmbl 25463 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ⊆ ℝ ∧ (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0) → ((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol)
145 mblvol 25458 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)) ∈ dom vol → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
146143, 144, 1453syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = (vol*‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))
147146, 142eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 (((𝑔𝑛) ⊆ ℝ ∧ (vol*‘(𝑔𝑛)) = 0) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
148137, 147syl 17 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) ∧ 𝑛 ∈ ℕ) → (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))) = 0)
149148mpteq2dva 5182 . . . . . . . . . . . . . . . . 17 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙)))) = (𝑛 ∈ ℕ ↦ 0))
150149seqeq3d 13916 . . . . . . . . . . . . . . . 16 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))) = seq1( + , (𝑛 ∈ ℕ ↦ 0)))
151150rneqd 5877 . . . . . . . . . . . . . . 15 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))) = ran seq1( + , (𝑛 ∈ ℕ ↦ 0)))
152151supeq1d 9330 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ))
153 0cn 11104 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
154 ser1const 13965 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℂ ∧ 𝑚 ∈ ℕ) → (seq1( + , (ℕ × {0}))‘𝑚) = (𝑚 · 0))
155153, 154mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑚) = (𝑚 · 0))
156 nncn 12133 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
157156mul01d 11312 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → (𝑚 · 0) = 0)
158155, 157eqtrd 2766 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (seq1( + , (ℕ × {0}))‘𝑚) = 0)
159158mpteq2ia 5184 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)) = (𝑚 ∈ ℕ ↦ 0)
160 fconstmpt 5676 . . . . . . . . . . . . . . . . . . . . 21 (ℕ × {0}) = (𝑛 ∈ ℕ ↦ 0)
161 seqeq3 13913 . . . . . . . . . . . . . . . . . . . . 21 ((ℕ × {0}) = (𝑛 ∈ ℕ ↦ 0) → seq1( + , (ℕ × {0})) = seq1( + , (𝑛 ∈ ℕ ↦ 0)))
162160, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (ℕ × {0})) = seq1( + , (𝑛 ∈ ℕ ↦ 0))
163 1z 12502 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℤ
164 seqfn 13920 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℤ → seq1( + , (ℕ × {0})) Fn (ℤ‘1))
165163, 164ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 seq1( + , (ℕ × {0})) Fn (ℤ‘1)
166 nnuz 12775 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ = (ℤ‘1)
167166fneq2i 6579 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) Fn (ℤ‘1))
168 dffn5 6880 . . . . . . . . . . . . . . . . . . . . . 22 (seq1( + , (ℕ × {0})) Fn ℕ ↔ seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)))
169167, 168bitr3i 277 . . . . . . . . . . . . . . . . . . . . 21 (seq1( + , (ℕ × {0})) Fn (ℤ‘1) ↔ seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚)))
170165, 169mpbi 230 . . . . . . . . . . . . . . . . . . . 20 seq1( + , (ℕ × {0})) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚))
171162, 170eqtr3i 2756 . . . . . . . . . . . . . . . . . . 19 seq1( + , (𝑛 ∈ ℕ ↦ 0)) = (𝑚 ∈ ℕ ↦ (seq1( + , (ℕ × {0}))‘𝑚))
172 fconstmpt 5676 . . . . . . . . . . . . . . . . . . 19 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
173159, 171, 1723eqtr4i 2764 . . . . . . . . . . . . . . . . . 18 seq1( + , (𝑛 ∈ ℕ ↦ 0)) = (ℕ × {0})
174173rneqi 5876 . . . . . . . . . . . . . . . . 17 ran seq1( + , (𝑛 ∈ ℕ ↦ 0)) = ran (ℕ × {0})
175 1nn 12136 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
176 ne0i 4288 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℕ → ℕ ≠ ∅)
177 rnxp 6117 . . . . . . . . . . . . . . . . . 18 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
178175, 176, 177mp2b 10 . . . . . . . . . . . . . . . . 17 ran (ℕ × {0}) = {0}
179174, 178eqtri 2754 . . . . . . . . . . . . . . . 16 ran seq1( + , (𝑛 ∈ ℕ ↦ 0)) = {0}
180179supeq1i 9331 . . . . . . . . . . . . . . 15 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ) = sup({0}, ℝ*, < )
181 xrltso 13040 . . . . . . . . . . . . . . . 16 < Or ℝ*
182 0xr 11159 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
183 supsn 9357 . . . . . . . . . . . . . . . 16 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
184181, 182, 183mp2an 692 . . . . . . . . . . . . . . 15 sup({0}, ℝ*, < ) = 0
185180, 184eqtri 2754 . . . . . . . . . . . . . 14 sup(ran seq1( + , (𝑛 ∈ ℕ ↦ 0)), ℝ*, < ) = 0
186152, 185eqtrdi 2782 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = 0)
187186adantl 481 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑔𝑛) ∖ 𝑙 ∈ (1..^𝑛)(𝑔𝑙))))), ℝ*, < ) = 0)
188124, 133, 1873eqtr3rd 2775 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0)) → 0 = (vol‘ 𝐴))
189188ex 412 . . . . . . . . . 10 (𝑔:ℕ–onto𝐴 → (∀𝑚 ∈ ℕ ((𝑔𝑚) ⊆ ℝ ∧ (vol*‘(𝑔𝑚)) = 0) → 0 = (vol‘ 𝐴)))
19038, 189sylbid 240 . . . . . . . . 9 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → 0 = (vol‘ 𝐴)))
19128, 190syl5 34 . . . . . . . 8 (𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
192191exlimiv 1931 . . . . . . 7 (∃𝑔 𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
19318, 192syl 17 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
194193expimpd 453 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
19511, 194pm2.61ine 3011 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴))
196 renepnf 11160 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
19747, 196mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
198 fveq2 6822 . . . . . . 7 ( 𝐴 = ℝ → (vol‘ 𝐴) = (vol‘ℝ))
199 rembl 25468 . . . . . . . . 9 ℝ ∈ dom vol
200 mblvol 25458 . . . . . . . . 9 (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ))
201199, 200ax-mp 5 . . . . . . . 8 (vol‘ℝ) = (vol*‘ℝ)
202 ovolre 25453 . . . . . . . 8 (vol*‘ℝ) = +∞
203201, 202eqtri 2754 . . . . . . 7 (vol‘ℝ) = +∞
204198, 203eqtrdi 2782 . . . . . 6 ( 𝐴 = ℝ → (vol‘ 𝐴) = +∞)
205197, 204neeqtrrd 3002 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol‘ 𝐴))
206205necon2i 2962 . . . 4 (0 = (vol‘ 𝐴) → 𝐴 ≠ ℝ)
207195, 206syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
208207expr 456 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
209 eqimss 3988 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
210209necon3bi 2954 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
211208, 210pm2.61d1 180 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  wss 3897  c0 4280  {csn 4573   cuni 4856   ciun 4939  Disj wdisj 5056   class class class wbr 5089  cmpt 5170   Or wor 5521   × cxp 5612  dom cdm 5614  ran crn 5615  cima 5617  Fun wfun 6475   Fn wfn 6476  ontowfo 6479  cfv 6481  (class class class)co 7346  cdom 8867  csdm 8868  supcsup 9324  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143  *cxr 11145   < clt 11146  cn 12125  cz 12468  cuz 12732  ..^cfzo 13554  seqcseq 13908  vol*covol 25390  volcvol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator