Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neik0imk0p | Structured version Visualization version GIF version |
Description: Kuratowski's K0 axiom implies K0'. Neighborhood version. Also a proof the dual KA axiom implies KA' when considering the convergents. (Contributed by RP, 28-Jun-2021.) |
Ref | Expression |
---|---|
neik0imk0p | ⊢ (∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥) → ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4268 | . 2 ⊢ (𝐵 ∈ (𝑁‘𝑥) → (𝑁‘𝑥) ≠ ∅) | |
2 | 1 | ralimi 3087 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥) → ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∅c0 4256 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-dif 3890 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |