| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neik0imk0p | Structured version Visualization version GIF version | ||
| Description: Kuratowski's K0 axiom implies K0'. Neighborhood version. Also a proof the dual KA axiom implies KA' when considering the convergents. (Contributed by RP, 28-Jun-2021.) |
| Ref | Expression |
|---|---|
| neik0imk0p | ⊢ (∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥) → ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4286 | . 2 ⊢ (𝐵 ∈ (𝑁‘𝑥) → (𝑁‘𝑥) ≠ ∅) | |
| 2 | 1 | ralimi 3069 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥) → ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4278 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-dif 3900 df-nul 4279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |