Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk2imkb Structured version   Visualization version   GIF version

Theorem ntrk2imkb 43364
Description: If an interior function is contracting, the interiors of disjoint sets are disjoint. Kuratowski's K2 axiom implies KB. Interior version. (Contributed by RP, 9-Jun-2021.)
Assertion
Ref Expression
ntrk2imkb (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡

Proof of Theorem ntrk2imkb
StepHypRef Expression
1 id 22 . . 3 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠)
2 fveq2 6885 . . . . . 6 (𝑠 = 𝑡 → (𝐼𝑠) = (𝐼𝑡))
3 id 22 . . . . . 6 (𝑠 = 𝑡𝑠 = 𝑡)
42, 3sseq12d 4010 . . . . 5 (𝑠 = 𝑡 → ((𝐼𝑠) ⊆ 𝑠 ↔ (𝐼𝑡) ⊆ 𝑡))
54cbvralvw 3228 . . . 4 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐼𝑡) ⊆ 𝑡)
65biimpi 215 . . 3 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑡 ∈ 𝒫 𝐵(𝐼𝑡) ⊆ 𝑡)
7 raaanv 4516 . . 3 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ↔ (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ∧ ∀𝑡 ∈ 𝒫 𝐵(𝐼𝑡) ⊆ 𝑡))
81, 6, 7sylanbrc 582 . 2 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡))
9 ss2in 4231 . . . . . . 7 (((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) → ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝑠𝑡))
109adantr 480 . . . . . 6 ((((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ∧ (𝑠𝑡) = ∅) → ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝑠𝑡))
11 simpr 484 . . . . . 6 ((((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ∧ (𝑠𝑡) = ∅) → (𝑠𝑡) = ∅)
1210, 11sseqtrd 4017 . . . . 5 ((((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ∧ (𝑠𝑡) = ∅) → ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅)
13 ss0 4393 . . . . 5 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
1412, 13syl 17 . . . 4 ((((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ∧ (𝑠𝑡) = ∅) → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
1514ex 412 . . 3 (((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) → ((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
16152ralimi 3117 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
178, 16syl 17 1 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wral 3055  cin 3942  wss 3943  c0 4317  𝒫 cpw 4597  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6489  df-fv 6545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator