Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrk2imkb Structured version   Visualization version   GIF version

Theorem ntrk2imkb 40740
Description: If an interior function is contracting, the interiors of disjoint sets are disjoint. Kuratowski's K2 axiom implies KB. Interior version. (Contributed by RP, 9-Jun-2021.)
Assertion
Ref Expression
ntrk2imkb (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡

Proof of Theorem ntrk2imkb
StepHypRef Expression
1 id 22 . . 3 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠)
2 fveq2 6645 . . . . . 6 (𝑠 = 𝑡 → (𝐼𝑠) = (𝐼𝑡))
3 id 22 . . . . . 6 (𝑠 = 𝑡𝑠 = 𝑡)
42, 3sseq12d 3948 . . . . 5 (𝑠 = 𝑡 → ((𝐼𝑠) ⊆ 𝑠 ↔ (𝐼𝑡) ⊆ 𝑡))
54cbvralvw 3396 . . . 4 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐼𝑡) ⊆ 𝑡)
65biimpi 219 . . 3 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑡 ∈ 𝒫 𝐵(𝐼𝑡) ⊆ 𝑡)
7 raaanv 4419 . . 3 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ↔ (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ∧ ∀𝑡 ∈ 𝒫 𝐵(𝐼𝑡) ⊆ 𝑡))
81, 6, 7sylanbrc 586 . 2 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡))
9 ss2in 4163 . . . . . . 7 (((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) → ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝑠𝑡))
109adantr 484 . . . . . 6 ((((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ∧ (𝑠𝑡) = ∅) → ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝑠𝑡))
11 simpr 488 . . . . . 6 ((((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ∧ (𝑠𝑡) = ∅) → (𝑠𝑡) = ∅)
1210, 11sseqtrd 3955 . . . . 5 ((((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ∧ (𝑠𝑡) = ∅) → ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅)
13 ss0 4306 . . . . 5 (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
1412, 13syl 17 . . . 4 ((((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) ∧ (𝑠𝑡) = ∅) → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)
1514ex 416 . . 3 (((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) → ((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
16152ralimi 3129 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ⊆ 𝑠 ∧ (𝐼𝑡) ⊆ 𝑡) → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
178, 16syl 17 1 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wral 3106  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-ral 3111  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator