Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsrcomplex Structured version   Visualization version   GIF version

Theorem ntrclsrcomplex 44068
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 25-Jun-2021.)
Hypotheses
Ref Expression
ntrclsbex.d 𝐷 = (𝑂𝐵)
ntrclsbex.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsrcomplex (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)

Proof of Theorem ntrclsrcomplex
StepHypRef Expression
1 ntrclsbex.d . . 3 𝐷 = (𝑂𝐵)
2 ntrclsbex.r . . 3 (𝜑𝐼𝐷𝐾)
31, 2ntrclsbex 44067 . 2 (𝜑𝐵 ∈ V)
4 difssd 4082 . 2 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
53, 4sselpwd 5261 1 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  𝒫 cpw 4545   class class class wbr 5086  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484
This theorem is referenced by:  ntrclsfveq1  44093  ntrclsfveq2  44094  ntrclsfveq  44095  ntrclsss  44096  ntrclsneine0lem  44097  ntrclsk2  44101  ntrclskb  44102  ntrclsk4  44105
  Copyright terms: Public domain W3C validator