| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsrcomplex | Structured version Visualization version GIF version | ||
| Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 25-Jun-2021.) |
| Ref | Expression |
|---|---|
| ntrclsbex.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrclsbex.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| Ref | Expression |
|---|---|
| ntrclsrcomplex | ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrclsbex.d | . . 3 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 2 | ntrclsbex.r | . . 3 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 3 | 1, 2 | ntrclsbex 44025 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 4 | difssd 4117 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
| 5 | 3, 4 | sselpwd 5303 | 1 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 𝒫 cpw 4580 class class class wbr 5124 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: ntrclsfveq1 44051 ntrclsfveq2 44052 ntrclsfveq 44053 ntrclsss 44054 ntrclsneine0lem 44055 ntrclsk2 44059 ntrclskb 44060 ntrclsk4 44063 |
| Copyright terms: Public domain | W3C validator |