Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsrcomplex | Structured version Visualization version GIF version |
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 25-Jun-2021.) |
Ref | Expression |
---|---|
ntrclsbex.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrclsbex.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
Ref | Expression |
---|---|
ntrclsrcomplex | ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrclsbex.d | . . 3 ⊢ 𝐷 = (𝑂‘𝐵) | |
2 | ntrclsbex.r | . . 3 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
3 | 1, 2 | ntrclsbex 41533 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
4 | difssd 4063 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
5 | 3, 4 | sselpwd 5245 | 1 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 𝒫 cpw 4530 class class class wbr 5070 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 |
This theorem is referenced by: ntrclsfveq1 41559 ntrclsfveq2 41560 ntrclsfveq 41561 ntrclsss 41562 ntrclsneine0lem 41563 ntrclsk2 41567 ntrclskb 41568 ntrclsk4 41571 |
Copyright terms: Public domain | W3C validator |