![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsrcomplex | Structured version Visualization version GIF version |
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 25-Jun-2021.) |
Ref | Expression |
---|---|
ntrclsbex.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrclsbex.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
Ref | Expression |
---|---|
ntrclsrcomplex | ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrclsbex.d | . . 3 ⊢ 𝐷 = (𝑂‘𝐵) | |
2 | ntrclsbex.r | . . 3 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
3 | 1, 2 | ntrclsbex 43248 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
4 | difssd 4132 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
5 | 3, 4 | sselpwd 5326 | 1 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∖ cdif 3945 𝒫 cpw 4602 class class class wbr 5148 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 |
This theorem is referenced by: ntrclsfveq1 43274 ntrclsfveq2 43275 ntrclsfveq 43276 ntrclsss 43277 ntrclsneine0lem 43278 ntrclsk2 43282 ntrclskb 43283 ntrclsk4 43286 |
Copyright terms: Public domain | W3C validator |