| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsrcomplex | Structured version Visualization version GIF version | ||
| Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 25-Jun-2021.) |
| Ref | Expression |
|---|---|
| ntrclsbex.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrclsbex.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| Ref | Expression |
|---|---|
| ntrclsrcomplex | ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrclsbex.d | . . 3 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 2 | ntrclsbex.r | . . 3 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 3 | 1, 2 | ntrclsbex 44191 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 4 | difssd 4086 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
| 5 | 3, 4 | sselpwd 5270 | 1 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 𝒫 cpw 4551 class class class wbr 5095 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: ntrclsfveq1 44217 ntrclsfveq2 44218 ntrclsfveq 44219 ntrclsss 44220 ntrclsneine0lem 44221 ntrclsk2 44225 ntrclskb 44226 ntrclsk4 44229 |
| Copyright terms: Public domain | W3C validator |