Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsrcomplex Structured version   Visualization version   GIF version

Theorem ntrclsrcomplex 41645
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 25-Jun-2021.)
Hypotheses
Ref Expression
ntrclsbex.d 𝐷 = (𝑂𝐵)
ntrclsbex.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsrcomplex (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)

Proof of Theorem ntrclsrcomplex
StepHypRef Expression
1 ntrclsbex.d . . 3 𝐷 = (𝑂𝐵)
2 ntrclsbex.r . . 3 (𝜑𝐼𝐷𝐾)
31, 2ntrclsbex 41644 . 2 (𝜑𝐵 ∈ V)
4 difssd 4067 . 2 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
53, 4sselpwd 5250 1 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  𝒫 cpw 4533   class class class wbr 5074  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by:  ntrclsfveq1  41670  ntrclsfveq2  41671  ntrclsfveq  41672  ntrclsss  41673  ntrclsneine0lem  41674  ntrclsk2  41678  ntrclskb  41679  ntrclsk4  41682
  Copyright terms: Public domain W3C validator