![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inpr0 | Structured version Visualization version GIF version |
Description: Rewrite an empty intersection with a pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
inpr0 | ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 3110 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) | |
2 | nelpr 32200 | . . . . . 6 ⊢ (𝑥 ∈ V → (¬ 𝑥 ∈ {𝐵, 𝐶} ↔ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
3 | 2 | elv 3479 | . . . . 5 ⊢ (¬ 𝑥 ∈ {𝐵, 𝐶} ↔ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
4 | 3 | imbi2i 336 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) |
5 | 4 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶}) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) |
6 | disj1 4450 | . . 3 ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶})) | |
7 | df-ral 3061 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
9 | nelb 3230 | . . 3 ⊢ (¬ 𝐵 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) | |
10 | nelb 3230 | . . 3 ⊢ (¬ 𝐶 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶) | |
11 | 9, 10 | anbi12i 626 | . 2 ⊢ ((¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) ↔ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) |
12 | 1, 8, 11 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 Vcvv 3473 ∩ cin 3947 ∅c0 4322 {cpr 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-nul 4323 df-sn 4629 df-pr 4631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |