| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inpr0 | Structured version Visualization version GIF version | ||
| Description: Rewrite an empty intersection with a pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| inpr0 | ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) | |
| 2 | nelpr 32467 | . . . . . 6 ⊢ (𝑥 ∈ V → (¬ 𝑥 ∈ {𝐵, 𝐶} ↔ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
| 3 | 2 | elv 3455 | . . . . 5 ⊢ (¬ 𝑥 ∈ {𝐵, 𝐶} ↔ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
| 4 | 3 | imbi2i 336 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) |
| 5 | 4 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶}) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) |
| 6 | disj1 4418 | . . 3 ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶})) | |
| 7 | df-ral 3046 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
| 9 | nelb 3214 | . . 3 ⊢ (¬ 𝐵 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) | |
| 10 | nelb 3214 | . . 3 ⊢ (¬ 𝐶 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶) | |
| 11 | 9, 10 | anbi12i 628 | . 2 ⊢ ((¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) ↔ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) |
| 12 | 1, 8, 11 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 Vcvv 3450 ∩ cin 3916 ∅c0 4299 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-nul 4300 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |