Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inpr0 Structured version   Visualization version   GIF version

Theorem inpr0 32558
Description: Rewrite an empty intersection with a pair. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
inpr0 ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵𝐴 ∧ ¬ 𝐶𝐴))

Proof of Theorem inpr0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3109 . 2 (∀𝑥𝐴 (𝑥𝐵𝑥𝐶) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 𝑥𝐶))
2 nelpr 32557 . . . . . 6 (𝑥 ∈ V → (¬ 𝑥 ∈ {𝐵, 𝐶} ↔ (𝑥𝐵𝑥𝐶)))
32elv 3483 . . . . 5 𝑥 ∈ {𝐵, 𝐶} ↔ (𝑥𝐵𝑥𝐶))
43imbi2i 336 . . . 4 ((𝑥𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶}) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
54albii 1816 . . 3 (∀𝑥(𝑥𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶}) ↔ ∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
6 disj1 4458 . . 3 ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶}))
7 df-ral 3060 . . 3 (∀𝑥𝐴 (𝑥𝐵𝑥𝐶) ↔ ∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
85, 6, 73bitr4i 303 . 2 ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ ∀𝑥𝐴 (𝑥𝐵𝑥𝐶))
9 nelb 3232 . . 3 𝐵𝐴 ↔ ∀𝑥𝐴 𝑥𝐵)
10 nelb 3232 . . 3 𝐶𝐴 ↔ ∀𝑥𝐴 𝑥𝐶)
119, 10anbi12i 628 . 2 ((¬ 𝐵𝐴 ∧ ¬ 𝐶𝐴) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 𝑥𝐶))
121, 8, 113bitr4i 303 1 ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵𝐴 ∧ ¬ 𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cin 3962  c0 4339  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-nul 4340  df-sn 4632  df-pr 4634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator