Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inpr0 | Structured version Visualization version GIF version |
Description: Rewrite an empty intersection with a pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
inpr0 | ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 3095 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) | |
2 | nelpr 30879 | . . . . . 6 ⊢ (𝑥 ∈ V → (¬ 𝑥 ∈ {𝐵, 𝐶} ↔ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
3 | 2 | elv 3438 | . . . . 5 ⊢ (¬ 𝑥 ∈ {𝐵, 𝐶} ↔ (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
4 | 3 | imbi2i 336 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶}) ↔ (𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) |
5 | 4 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶}) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) |
6 | disj1 4384 | . . 3 ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵, 𝐶})) | |
7 | df-ral 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶))) | |
8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
9 | nelb 3195 | . . 3 ⊢ (¬ 𝐵 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐵) | |
10 | nelb 3195 | . . 3 ⊢ (¬ 𝐶 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶) | |
11 | 9, 10 | anbi12i 627 | . 2 ⊢ ((¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) ↔ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) |
12 | 1, 8, 11 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ {𝐵, 𝐶}) = ∅ ↔ (¬ 𝐵 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 Vcvv 3432 ∩ cin 3886 ∅c0 4256 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |