Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelbOLDOLD Structured version   Visualization version   GIF version

Theorem nelbOLDOLD 30693
Description: Obsolete version of nelb 3195 as of 23-Jan-2024. (Contributed by Thierry Arnoux, 20-Nov-2023.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
nelbOLDOLD 𝐴𝐵 ↔ ∀𝑥𝐵 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nelbOLDOLD
StepHypRef Expression
1 df-ral 3069 . 2 (∀𝑥𝐵 ¬ 𝑥 = 𝐴 ↔ ∀𝑥(𝑥𝐵 → ¬ 𝑥 = 𝐴))
2 df-ne 2944 . . 3 (𝑥𝐴 ↔ ¬ 𝑥 = 𝐴)
32ralbii 3091 . 2 (∀𝑥𝐵 𝑥𝐴 ↔ ∀𝑥𝐵 ¬ 𝑥 = 𝐴)
4 dfclel 2819 . . . 4 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
54notbii 323 . . 3 𝐴𝐵 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
6 alnex 1789 . . 3 (∀𝑥 ¬ (𝑥 = 𝐴𝑥𝐵) ↔ ¬ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
7 imnan 403 . . . . 5 ((𝑥𝐵 → ¬ 𝑥 = 𝐴) ↔ ¬ (𝑥𝐵𝑥 = 𝐴))
8 ancom 464 . . . . . 6 ((𝑥𝐵𝑥 = 𝐴) ↔ (𝑥 = 𝐴𝑥𝐵))
98notbii 323 . . . . 5 (¬ (𝑥𝐵𝑥 = 𝐴) ↔ ¬ (𝑥 = 𝐴𝑥𝐵))
107, 9bitr2i 279 . . . 4 (¬ (𝑥 = 𝐴𝑥𝐵) ↔ (𝑥𝐵 → ¬ 𝑥 = 𝐴))
1110albii 1827 . . 3 (∀𝑥 ¬ (𝑥 = 𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐵 → ¬ 𝑥 = 𝐴))
125, 6, 113bitr2i 302 . 2 𝐴𝐵 ↔ ∀𝑥(𝑥𝐵 → ¬ 𝑥 = 𝐴))
131, 3, 123bitr4ri 307 1 𝐴𝐵 ↔ ∀𝑥𝐵 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wex 1787  wcel 2112  wne 2943  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-clel 2818  df-ne 2944  df-ral 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator