Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nelbOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nelb 3195 as of 23-Jan-2024. (Contributed by Thierry Arnoux, 20-Nov-2023.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nelbOLDOLD | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3069 | . 2 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴)) | |
2 | df-ne 2944 | . . 3 ⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴) | |
3 | 2 | ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴) |
4 | dfclel 2819 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
5 | 4 | notbii 323 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
6 | alnex 1789 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
7 | imnan 403 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴) ↔ ¬ (𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
8 | ancom 464 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
9 | 8 | notbii 323 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
10 | 7, 9 | bitr2i 279 | . . . 4 ⊢ (¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴)) |
11 | 10 | albii 1827 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴)) |
12 | 5, 6, 11 | 3bitr2i 302 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → ¬ 𝑥 = 𝐴)) |
13 | 1, 3, 12 | 3bitr4ri 307 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 = wceq 1543 ∃wex 1787 ∈ wcel 2112 ≠ wne 2943 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-clel 2818 df-ne 2944 df-ral 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |