MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem9 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem9 30029
Description: Lemma 9 for frgrncvvdeq 30031. This corresponds to statement 3 in [Huneke] p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem9 (𝜑𝐴:𝐷onto𝑁)
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥   𝑦,𝐷   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem9
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . 3 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem4 30024 . 2 (𝜑𝐴:𝐷𝑁)
129adantr 480 . . . . . . 7 ((𝜑𝑛𝑁) → 𝐺 ∈ FriendGraph )
134eleq2i 2817 . . . . . . . . . 10 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑌))
141nbgrisvtx 29067 . . . . . . . . . . 11 (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑉)
1514a1i 11 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑉))
1613, 15biimtrid 241 . . . . . . . . 9 (𝜑 → (𝑛𝑁𝑛𝑉))
1716imp 406 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑛𝑉)
185adantr 480 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑋𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem1 30021 . . . . . . . . . 10 (𝜑𝑋𝑁)
20 df-nel 3039 . . . . . . . . . . 11 (𝑋𝑁 ↔ ¬ 𝑋𝑁)
21 nelelne 3033 . . . . . . . . . . 11 𝑋𝑁 → (𝑛𝑁𝑛𝑋))
2220, 21sylbi 216 . . . . . . . . . 10 (𝑋𝑁 → (𝑛𝑁𝑛𝑋))
2319, 22syl 17 . . . . . . . . 9 (𝜑 → (𝑛𝑁𝑛𝑋))
2423imp 406 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑛𝑋)
2517, 18, 243jca 1125 . . . . . . 7 ((𝜑𝑛𝑁) → (𝑛𝑉𝑋𝑉𝑛𝑋))
2612, 25jca 511 . . . . . 6 ((𝜑𝑛𝑁) → (𝐺 ∈ FriendGraph ∧ (𝑛𝑉𝑋𝑉𝑛𝑋)))
271, 2frcond2 29989 . . . . . . 7 (𝐺 ∈ FriendGraph → ((𝑛𝑉𝑋𝑉𝑛𝑋) → ∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
2827imp 406 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (𝑛𝑉𝑋𝑉𝑛𝑋)) → ∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))
29 reurex 3372 . . . . . . 7 (∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → ∃𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))
30 df-rex 3063 . . . . . . 7 (∃𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) ↔ ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
3129, 30sylib 217 . . . . . 6 (∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
3226, 28, 313syl 18 . . . . 5 ((𝜑𝑛𝑁) → ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
33 frgrusgr 29983 . . . . . . . . . . . . 13 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
342nbusgreledg 29079 . . . . . . . . . . . . . 14 (𝐺 ∈ USGraph → (𝑚 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑚, 𝑋} ∈ 𝐸))
3534bicomd 222 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → ({𝑚, 𝑋} ∈ 𝐸𝑚 ∈ (𝐺 NeighbVtx 𝑋)))
369, 33, 353syl 18 . . . . . . . . . . . 12 (𝜑 → ({𝑚, 𝑋} ∈ 𝐸𝑚 ∈ (𝐺 NeighbVtx 𝑋)))
3736biimpa 476 . . . . . . . . . . 11 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑚 ∈ (𝐺 NeighbVtx 𝑋))
383eleq2i 2817 . . . . . . . . . . 11 (𝑚𝐷𝑚 ∈ (𝐺 NeighbVtx 𝑋))
3937, 38sylibr 233 . . . . . . . . . 10 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑚𝐷)
4039ad2ant2rl 746 . . . . . . . . 9 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑚𝐷)
412nbusgreledg 29079 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) ↔ {𝑛, 𝑚} ∈ 𝐸))
4241biimpar 477 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑚} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚))
4342a1d 25 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑚} ∈ 𝐸) → ({𝑚, 𝑋} ∈ 𝐸𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4443expimpd 453 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
459, 33, 443syl 18 . . . . . . . . . . . 12 (𝜑 → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4645adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝑁) → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4746imp 406 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚))
48 elin 3956 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ (𝑛 ∈ (𝐺 NeighbVtx 𝑚) ∧ 𝑛𝑁))
49 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝜑)
5049, 39jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝜑𝑚𝐷))
51 preq1 4729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑚 → {𝑥, 𝑦} = {𝑚, 𝑦})
5251eleq1d 2810 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑚 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑚, 𝑦} ∈ 𝐸))
5352riotabidv 7359 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑚 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
5453cbvmptv 5251 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑚𝐷 ↦ (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
5510, 54eqtri 2752 . . . . . . . . . . . . . . . . . . . 20 𝐴 = (𝑚𝐷 ↦ (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
561, 2, 3, 4, 5, 6, 7, 8, 9, 55frgrncvvdeqlem5 30025 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝐷) → {(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁))
57 eleq2 2814 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 NeighbVtx 𝑚) ∩ 𝑁) = {(𝐴𝑚)} → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ 𝑛 ∈ {(𝐴𝑚)}))
5857eqcoms 2732 . . . . . . . . . . . . . . . . . . . 20 ({(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ 𝑛 ∈ {(𝐴𝑚)}))
59 elsni 4637 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ {(𝐴𝑚)} → 𝑛 = (𝐴𝑚))
6058, 59syl6bi 253 . . . . . . . . . . . . . . . . . . 19 ({(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚)))
6150, 56, 603syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚)))
6261expcom 413 . . . . . . . . . . . . . . . . 17 ({𝑚, 𝑋} ∈ 𝐸 → (𝜑 → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚))))
6362com3r 87 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → ({𝑚, 𝑋} ∈ 𝐸 → (𝜑𝑛 = (𝐴𝑚))))
6448, 63sylbir 234 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (𝐺 NeighbVtx 𝑚) ∧ 𝑛𝑁) → ({𝑚, 𝑋} ∈ 𝐸 → (𝜑𝑛 = (𝐴𝑚))))
6564ex 412 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → (𝑛𝑁 → ({𝑚, 𝑋} ∈ 𝐸 → (𝜑𝑛 = (𝐴𝑚)))))
6665com14 96 . . . . . . . . . . . . 13 (𝜑 → (𝑛𝑁 → ({𝑚, 𝑋} ∈ 𝐸 → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚)))))
6766imp 406 . . . . . . . . . . . 12 ((𝜑𝑛𝑁) → ({𝑚, 𝑋} ∈ 𝐸 → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚))))
6867adantld 490 . . . . . . . . . . 11 ((𝜑𝑛𝑁) → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚))))
6968imp 406 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚)))
7047, 69mpd 15 . . . . . . . . 9 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑛 = (𝐴𝑚))
7140, 70jca 511 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑚𝐷𝑛 = (𝐴𝑚)))
7271ex 412 . . . . . . 7 ((𝜑𝑛𝑁) → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑚𝐷𝑛 = (𝐴𝑚))))
7372adantld 490 . . . . . 6 ((𝜑𝑛𝑁) → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑚𝐷𝑛 = (𝐴𝑚))))
7473eximdv 1912 . . . . 5 ((𝜑𝑛𝑁) → (∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚))))
7532, 74mpd 15 . . . 4 ((𝜑𝑛𝑁) → ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚)))
76 df-rex 3063 . . . 4 (∃𝑚𝐷 𝑛 = (𝐴𝑚) ↔ ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚)))
7775, 76sylibr 233 . . 3 ((𝜑𝑛𝑁) → ∃𝑚𝐷 𝑛 = (𝐴𝑚))
7877ralrimiva 3138 . 2 (𝜑 → ∀𝑛𝑁𝑚𝐷 𝑛 = (𝐴𝑚))
79 dffo3 7093 . 2 (𝐴:𝐷onto𝑁 ↔ (𝐴:𝐷𝑁 ∧ ∀𝑛𝑁𝑚𝐷 𝑛 = (𝐴𝑚)))
8011, 78, 79sylanbrc 582 1 (𝜑𝐴:𝐷onto𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2932  wnel 3038  wral 3053  wrex 3062  ∃!wreu 3366  cin 3939  {csn 4620  {cpr 4622  cmpt 5221  wf 6529  ontowfo 6531  cfv 6533  crio 7356  (class class class)co 7401  Vtxcvtx 28725  Edgcedg 28776  USGraphcusgr 28878   NeighbVtx cnbgr 29058   FriendGraph cfrgr 29980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-fz 13482  df-hash 14288  df-edg 28777  df-upgr 28811  df-umgr 28812  df-usgr 28880  df-nbgr 29059  df-frgr 29981
This theorem is referenced by:  frgrncvvdeqlem10  30030
  Copyright terms: Public domain W3C validator