MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem9 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem9 30339
Description: Lemma 9 for frgrncvvdeq 30341. This corresponds to statement 3 in [Huneke] p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem9 (𝜑𝐴:𝐷onto𝑁)
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥   𝑦,𝐷   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem9
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . 3 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem4 30334 . 2 (𝜑𝐴:𝐷𝑁)
129adantr 480 . . . . . . 7 ((𝜑𝑛𝑁) → 𝐺 ∈ FriendGraph )
134eleq2i 2836 . . . . . . . . . 10 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑌))
141nbgrisvtx 29376 . . . . . . . . . . 11 (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑉)
1514a1i 11 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑉))
1613, 15biimtrid 242 . . . . . . . . 9 (𝜑 → (𝑛𝑁𝑛𝑉))
1716imp 406 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑛𝑉)
185adantr 480 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑋𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem1 30331 . . . . . . . . . 10 (𝜑𝑋𝑁)
20 df-nel 3053 . . . . . . . . . . 11 (𝑋𝑁 ↔ ¬ 𝑋𝑁)
21 nelelne 3047 . . . . . . . . . . 11 𝑋𝑁 → (𝑛𝑁𝑛𝑋))
2220, 21sylbi 217 . . . . . . . . . 10 (𝑋𝑁 → (𝑛𝑁𝑛𝑋))
2319, 22syl 17 . . . . . . . . 9 (𝜑 → (𝑛𝑁𝑛𝑋))
2423imp 406 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑛𝑋)
2517, 18, 243jca 1128 . . . . . . 7 ((𝜑𝑛𝑁) → (𝑛𝑉𝑋𝑉𝑛𝑋))
2612, 25jca 511 . . . . . 6 ((𝜑𝑛𝑁) → (𝐺 ∈ FriendGraph ∧ (𝑛𝑉𝑋𝑉𝑛𝑋)))
271, 2frcond2 30299 . . . . . . 7 (𝐺 ∈ FriendGraph → ((𝑛𝑉𝑋𝑉𝑛𝑋) → ∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
2827imp 406 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (𝑛𝑉𝑋𝑉𝑛𝑋)) → ∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))
29 reurex 3392 . . . . . . 7 (∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → ∃𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))
30 df-rex 3077 . . . . . . 7 (∃𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) ↔ ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
3129, 30sylib 218 . . . . . 6 (∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
3226, 28, 313syl 18 . . . . 5 ((𝜑𝑛𝑁) → ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
33 frgrusgr 30293 . . . . . . . . . . . . 13 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
342nbusgreledg 29388 . . . . . . . . . . . . . 14 (𝐺 ∈ USGraph → (𝑚 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑚, 𝑋} ∈ 𝐸))
3534bicomd 223 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → ({𝑚, 𝑋} ∈ 𝐸𝑚 ∈ (𝐺 NeighbVtx 𝑋)))
369, 33, 353syl 18 . . . . . . . . . . . 12 (𝜑 → ({𝑚, 𝑋} ∈ 𝐸𝑚 ∈ (𝐺 NeighbVtx 𝑋)))
3736biimpa 476 . . . . . . . . . . 11 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑚 ∈ (𝐺 NeighbVtx 𝑋))
383eleq2i 2836 . . . . . . . . . . 11 (𝑚𝐷𝑚 ∈ (𝐺 NeighbVtx 𝑋))
3937, 38sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑚𝐷)
4039ad2ant2rl 748 . . . . . . . . 9 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑚𝐷)
412nbusgreledg 29388 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) ↔ {𝑛, 𝑚} ∈ 𝐸))
4241biimpar 477 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑚} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚))
4342a1d 25 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑚} ∈ 𝐸) → ({𝑚, 𝑋} ∈ 𝐸𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4443expimpd 453 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
459, 33, 443syl 18 . . . . . . . . . . . 12 (𝜑 → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4645adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝑁) → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4746imp 406 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚))
48 elin 3992 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ (𝑛 ∈ (𝐺 NeighbVtx 𝑚) ∧ 𝑛𝑁))
49 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝜑)
5049, 39jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝜑𝑚𝐷))
51 preq1 4758 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑚 → {𝑥, 𝑦} = {𝑚, 𝑦})
5251eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑚 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑚, 𝑦} ∈ 𝐸))
5352riotabidv 7406 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑚 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
5453cbvmptv 5279 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑚𝐷 ↦ (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
5510, 54eqtri 2768 . . . . . . . . . . . . . . . . . . . 20 𝐴 = (𝑚𝐷 ↦ (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
561, 2, 3, 4, 5, 6, 7, 8, 9, 55frgrncvvdeqlem5 30335 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝐷) → {(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁))
57 eleq2 2833 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 NeighbVtx 𝑚) ∩ 𝑁) = {(𝐴𝑚)} → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ 𝑛 ∈ {(𝐴𝑚)}))
5857eqcoms 2748 . . . . . . . . . . . . . . . . . . . 20 ({(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ 𝑛 ∈ {(𝐴𝑚)}))
59 elsni 4665 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ {(𝐴𝑚)} → 𝑛 = (𝐴𝑚))
6058, 59biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 ({(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚)))
6150, 56, 603syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚)))
6261expcom 413 . . . . . . . . . . . . . . . . 17 ({𝑚, 𝑋} ∈ 𝐸 → (𝜑 → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚))))
6362com3r 87 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → ({𝑚, 𝑋} ∈ 𝐸 → (𝜑𝑛 = (𝐴𝑚))))
6448, 63sylbir 235 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (𝐺 NeighbVtx 𝑚) ∧ 𝑛𝑁) → ({𝑚, 𝑋} ∈ 𝐸 → (𝜑𝑛 = (𝐴𝑚))))
6564ex 412 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → (𝑛𝑁 → ({𝑚, 𝑋} ∈ 𝐸 → (𝜑𝑛 = (𝐴𝑚)))))
6665com14 96 . . . . . . . . . . . . 13 (𝜑 → (𝑛𝑁 → ({𝑚, 𝑋} ∈ 𝐸 → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚)))))
6766imp 406 . . . . . . . . . . . 12 ((𝜑𝑛𝑁) → ({𝑚, 𝑋} ∈ 𝐸 → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚))))
6867adantld 490 . . . . . . . . . . 11 ((𝜑𝑛𝑁) → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚))))
6968imp 406 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚)))
7047, 69mpd 15 . . . . . . . . 9 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑛 = (𝐴𝑚))
7140, 70jca 511 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑚𝐷𝑛 = (𝐴𝑚)))
7271ex 412 . . . . . . 7 ((𝜑𝑛𝑁) → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑚𝐷𝑛 = (𝐴𝑚))))
7372adantld 490 . . . . . 6 ((𝜑𝑛𝑁) → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑚𝐷𝑛 = (𝐴𝑚))))
7473eximdv 1916 . . . . 5 ((𝜑𝑛𝑁) → (∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚))))
7532, 74mpd 15 . . . 4 ((𝜑𝑛𝑁) → ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚)))
76 df-rex 3077 . . . 4 (∃𝑚𝐷 𝑛 = (𝐴𝑚) ↔ ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚)))
7775, 76sylibr 234 . . 3 ((𝜑𝑛𝑁) → ∃𝑚𝐷 𝑛 = (𝐴𝑚))
7877ralrimiva 3152 . 2 (𝜑 → ∀𝑛𝑁𝑚𝐷 𝑛 = (𝐴𝑚))
79 dffo3 7136 . 2 (𝐴:𝐷onto𝑁 ↔ (𝐴:𝐷𝑁 ∧ ∀𝑛𝑁𝑚𝐷 𝑛 = (𝐴𝑚)))
8011, 78, 79sylanbrc 582 1 (𝜑𝐴:𝐷onto𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wnel 3052  wral 3067  wrex 3076  ∃!wreu 3386  cin 3975  {csn 4648  {cpr 4650  cmpt 5249  wf 6569  ontowfo 6571  cfv 6573  crio 7403  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082  USGraphcusgr 29184   NeighbVtx cnbgr 29367   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-upgr 29117  df-umgr 29118  df-usgr 29186  df-nbgr 29368  df-frgr 30291
This theorem is referenced by:  frgrncvvdeqlem10  30340
  Copyright terms: Public domain W3C validator