MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem9 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem9 28256
Description: Lemma 9 for frgrncvvdeq 28258. This corresponds to statement 3 in [Huneke] p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem9 (𝜑𝐴:𝐷onto𝑁)
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥   𝑦,𝐷   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem9
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . 3 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem4 28251 . 2 (𝜑𝐴:𝐷𝑁)
129adantr 484 . . . . . . 7 ((𝜑𝑛𝑁) → 𝐺 ∈ FriendGraph )
134eleq2i 2825 . . . . . . . . . 10 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑌))
141nbgrisvtx 27295 . . . . . . . . . . 11 (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑉)
1514a1i 11 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑉))
1613, 15syl5bi 245 . . . . . . . . 9 (𝜑 → (𝑛𝑁𝑛𝑉))
1716imp 410 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑛𝑉)
185adantr 484 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑋𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem1 28248 . . . . . . . . . 10 (𝜑𝑋𝑁)
20 df-nel 3040 . . . . . . . . . . 11 (𝑋𝑁 ↔ ¬ 𝑋𝑁)
21 nelelne 3033 . . . . . . . . . . 11 𝑋𝑁 → (𝑛𝑁𝑛𝑋))
2220, 21sylbi 220 . . . . . . . . . 10 (𝑋𝑁 → (𝑛𝑁𝑛𝑋))
2319, 22syl 17 . . . . . . . . 9 (𝜑 → (𝑛𝑁𝑛𝑋))
2423imp 410 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑛𝑋)
2517, 18, 243jca 1129 . . . . . . 7 ((𝜑𝑛𝑁) → (𝑛𝑉𝑋𝑉𝑛𝑋))
2612, 25jca 515 . . . . . 6 ((𝜑𝑛𝑁) → (𝐺 ∈ FriendGraph ∧ (𝑛𝑉𝑋𝑉𝑛𝑋)))
271, 2frcond2 28216 . . . . . . 7 (𝐺 ∈ FriendGraph → ((𝑛𝑉𝑋𝑉𝑛𝑋) → ∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
2827imp 410 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (𝑛𝑉𝑋𝑉𝑛𝑋)) → ∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))
29 reurex 3330 . . . . . . 7 (∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → ∃𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))
30 df-rex 3060 . . . . . . 7 (∃𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) ↔ ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
3129, 30sylib 221 . . . . . 6 (∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
3226, 28, 313syl 18 . . . . 5 ((𝜑𝑛𝑁) → ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
33 frgrusgr 28210 . . . . . . . . . . . . 13 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
342nbusgreledg 27307 . . . . . . . . . . . . . 14 (𝐺 ∈ USGraph → (𝑚 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑚, 𝑋} ∈ 𝐸))
3534bicomd 226 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → ({𝑚, 𝑋} ∈ 𝐸𝑚 ∈ (𝐺 NeighbVtx 𝑋)))
369, 33, 353syl 18 . . . . . . . . . . . 12 (𝜑 → ({𝑚, 𝑋} ∈ 𝐸𝑚 ∈ (𝐺 NeighbVtx 𝑋)))
3736biimpa 480 . . . . . . . . . . 11 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑚 ∈ (𝐺 NeighbVtx 𝑋))
383eleq2i 2825 . . . . . . . . . . 11 (𝑚𝐷𝑚 ∈ (𝐺 NeighbVtx 𝑋))
3937, 38sylibr 237 . . . . . . . . . 10 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑚𝐷)
4039ad2ant2rl 749 . . . . . . . . 9 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑚𝐷)
412nbusgreledg 27307 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) ↔ {𝑛, 𝑚} ∈ 𝐸))
4241biimpar 481 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑚} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚))
4342a1d 25 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ {𝑛, 𝑚} ∈ 𝐸) → ({𝑚, 𝑋} ∈ 𝐸𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4443expimpd 457 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
459, 33, 443syl 18 . . . . . . . . . . . 12 (𝜑 → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4645adantr 484 . . . . . . . . . . 11 ((𝜑𝑛𝑁) → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4746imp 410 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚))
48 elin 3869 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ (𝑛 ∈ (𝐺 NeighbVtx 𝑚) ∧ 𝑛𝑁))
49 simpl 486 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝜑)
5049, 39jca 515 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝜑𝑚𝐷))
51 preq1 4634 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑚 → {𝑥, 𝑦} = {𝑚, 𝑦})
5251eleq1d 2818 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑚 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑚, 𝑦} ∈ 𝐸))
5352riotabidv 7141 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑚 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
5453cbvmptv 5143 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑚𝐷 ↦ (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
5510, 54eqtri 2762 . . . . . . . . . . . . . . . . . . . 20 𝐴 = (𝑚𝐷 ↦ (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
561, 2, 3, 4, 5, 6, 7, 8, 9, 55frgrncvvdeqlem5 28252 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝐷) → {(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁))
57 eleq2 2822 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 NeighbVtx 𝑚) ∩ 𝑁) = {(𝐴𝑚)} → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ 𝑛 ∈ {(𝐴𝑚)}))
5857eqcoms 2747 . . . . . . . . . . . . . . . . . . . 20 ({(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ 𝑛 ∈ {(𝐴𝑚)}))
59 elsni 4543 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ {(𝐴𝑚)} → 𝑛 = (𝐴𝑚))
6058, 59syl6bi 256 . . . . . . . . . . . . . . . . . . 19 ({(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚)))
6150, 56, 603syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚)))
6261expcom 417 . . . . . . . . . . . . . . . . 17 ({𝑚, 𝑋} ∈ 𝐸 → (𝜑 → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚))))
6362com3r 87 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → ({𝑚, 𝑋} ∈ 𝐸 → (𝜑𝑛 = (𝐴𝑚))))
6448, 63sylbir 238 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (𝐺 NeighbVtx 𝑚) ∧ 𝑛𝑁) → ({𝑚, 𝑋} ∈ 𝐸 → (𝜑𝑛 = (𝐴𝑚))))
6564ex 416 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → (𝑛𝑁 → ({𝑚, 𝑋} ∈ 𝐸 → (𝜑𝑛 = (𝐴𝑚)))))
6665com14 96 . . . . . . . . . . . . 13 (𝜑 → (𝑛𝑁 → ({𝑚, 𝑋} ∈ 𝐸 → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚)))))
6766imp 410 . . . . . . . . . . . 12 ((𝜑𝑛𝑁) → ({𝑚, 𝑋} ∈ 𝐸 → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚))))
6867adantld 494 . . . . . . . . . . 11 ((𝜑𝑛𝑁) → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚))))
6968imp 410 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚)))
7047, 69mpd 15 . . . . . . . . 9 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑛 = (𝐴𝑚))
7140, 70jca 515 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑚𝐷𝑛 = (𝐴𝑚)))
7271ex 416 . . . . . . 7 ((𝜑𝑛𝑁) → (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑚𝐷𝑛 = (𝐴𝑚))))
7372adantld 494 . . . . . 6 ((𝜑𝑛𝑁) → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑚𝐷𝑛 = (𝐴𝑚))))
7473eximdv 1924 . . . . 5 ((𝜑𝑛𝑁) → (∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚))))
7532, 74mpd 15 . . . 4 ((𝜑𝑛𝑁) → ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚)))
76 df-rex 3060 . . . 4 (∃𝑚𝐷 𝑛 = (𝐴𝑚) ↔ ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚)))
7775, 76sylibr 237 . . 3 ((𝜑𝑛𝑁) → ∃𝑚𝐷 𝑛 = (𝐴𝑚))
7877ralrimiva 3097 . 2 (𝜑 → ∀𝑛𝑁𝑚𝐷 𝑛 = (𝐴𝑚))
79 dffo3 6890 . 2 (𝐴:𝐷onto𝑁 ↔ (𝐴:𝐷𝑁 ∧ ∀𝑛𝑁𝑚𝐷 𝑛 = (𝐴𝑚)))
8011, 78, 79sylanbrc 586 1 (𝜑𝐴:𝐷onto𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wex 1786  wcel 2114  wne 2935  wnel 3039  wral 3054  wrex 3055  ∃!wreu 3056  cin 3852  {csn 4526  {cpr 4528  cmpt 5120  wf 6345  ontowfo 6347  cfv 6349  crio 7138  (class class class)co 7182  Vtxcvtx 26953  Edgcedg 27004  USGraphcusgr 27106   NeighbVtx cnbgr 27286   FriendGraph cfrgr 28207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-oadd 8147  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-dju 9415  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-n0 11989  df-xnn0 12061  df-z 12075  df-uz 12337  df-fz 12994  df-hash 13795  df-edg 27005  df-upgr 27039  df-umgr 27040  df-usgr 27108  df-nbgr 27287  df-frgr 28208
This theorem is referenced by:  frgrncvvdeqlem10  28257
  Copyright terms: Public domain W3C validator