Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elneq | Structured version Visualization version GIF version |
Description: A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.) |
Ref | Expression |
---|---|
elneq | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9213 | . 2 ⊢ ¬ 𝐵 ∈ 𝐵 | |
2 | nelelne 3040 | . 2 ⊢ (¬ 𝐵 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2110 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-reg 9208 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-sn 4542 df-pr 4544 |
This theorem is referenced by: nelaneq 9215 preleqg 9230 dfac2b 9744 |
Copyright terms: Public domain | W3C validator |