MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elneq Structured version   Visualization version   GIF version

Theorem elneq 9612
Description: A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.)
Assertion
Ref Expression
elneq (𝐴𝐵𝐴𝐵)

Proof of Theorem elneq
StepHypRef Expression
1 elirr 9611 . 2 ¬ 𝐵𝐵
2 nelelne 3031 . 2 𝐵𝐵 → (𝐴𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wne 2932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-pr 5402  ax-reg 9606
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-v 3461  df-un 3931  df-sn 4602  df-pr 4604
This theorem is referenced by:  nelaneq  9613  preleqg  9629  dfac2b  10145  disjressuc2  38406  oaomoencom  43341  oenassex  43342  tfsconcat0b  43370
  Copyright terms: Public domain W3C validator