| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elneq | Structured version Visualization version GIF version | ||
| Description: A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.) |
| Ref | Expression |
|---|---|
| elneq | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 9550 | . 2 ⊢ ¬ 𝐵 ∈ 𝐵 | |
| 2 | nelelne 3024 | . 2 ⊢ (¬ 𝐵 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-pr 5387 ax-reg 9545 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: nelaneq 9552 preleqg 9568 dfac2b 10084 disjressuc2 38374 oaomoencom 43306 oenassex 43307 tfsconcat0b 43335 |
| Copyright terms: Public domain | W3C validator |