MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elneq Structured version   Visualization version   GIF version

Theorem elneq 9599
Description: A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.)
Assertion
Ref Expression
elneq (𝐴𝐵𝐴𝐵)

Proof of Theorem elneq
StepHypRef Expression
1 elirr 9598 . 2 ¬ 𝐵𝐵
2 nelelne 3040 . 2 𝐵𝐵 → (𝐴𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2105  wne 2939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-pr 5427  ax-reg 9593
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-v 3475  df-un 3953  df-sn 4629  df-pr 4631
This theorem is referenced by:  nelaneq  9600  preleqg  9616  dfac2b  10131  disjressuc2  37574  oaomoencom  42382  oenassex  42383  tfsconcat0b  42411
  Copyright terms: Public domain W3C validator