Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elneq | Structured version Visualization version GIF version |
Description: A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.) |
Ref | Expression |
---|---|
elneq | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9326 | . 2 ⊢ ¬ 𝐵 ∈ 𝐵 | |
2 | nelelne 3045 | . 2 ⊢ (¬ 𝐵 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2110 ≠ wne 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-reg 9321 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-sn 4568 df-pr 4570 |
This theorem is referenced by: nelaneq 9328 preleqg 9343 dfac2b 9879 |
Copyright terms: Public domain | W3C validator |