| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elneq | Structured version Visualization version GIF version | ||
| Description: A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.) |
| Ref | Expression |
|---|---|
| elneq | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 9485 | . 2 ⊢ ¬ 𝐵 ∈ 𝐵 | |
| 2 | nelelne 3027 | . 2 ⊢ (¬ 𝐵 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 |
| This theorem is referenced by: nelaneqOLD 9488 preleqg 9505 dfac2b 10022 disjressuc2 38445 oaomoencom 43420 oenassex 43421 tfsconcat0b 43449 |
| Copyright terms: Public domain | W3C validator |