MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elneq Structured version   Visualization version   GIF version

Theorem elneq 9667
Description: A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.)
Assertion
Ref Expression
elneq (𝐴𝐵𝐴𝐵)

Proof of Theorem elneq
StepHypRef Expression
1 elirr 9666 . 2 ¬ 𝐵𝐵
2 nelelne 3047 . 2 𝐵𝐵 → (𝐴𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by:  nelaneq  9668  preleqg  9684  dfac2b  10200  disjressuc2  38344  oaomoencom  43279  oenassex  43280  tfsconcat0b  43308
  Copyright terms: Public domain W3C validator