Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elneq | Structured version Visualization version GIF version |
Description: A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.) |
Ref | Expression |
---|---|
elneq | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9286 | . 2 ⊢ ¬ 𝐵 ∈ 𝐵 | |
2 | nelelne 3042 | . 2 ⊢ (¬ 𝐵 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 |
This theorem is referenced by: nelaneq 9288 preleqg 9303 dfac2b 9817 |
Copyright terms: Public domain | W3C validator |