MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elneq Structured version   Visualization version   GIF version

Theorem elneq 9357
Description: A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.)
Assertion
Ref Expression
elneq (𝐴𝐵𝐴𝐵)

Proof of Theorem elneq
StepHypRef Expression
1 elirr 9356 . 2 ¬ 𝐵𝐵
2 nelelne 3043 . 2 𝐵𝐵 → (𝐴𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-pr 4564
This theorem is referenced by:  nelaneq  9358  preleqg  9373  dfac2b  9886
  Copyright terms: Public domain W3C validator