![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq 2855 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
2 | 1 | neqned 2945 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2104 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-clel 2808 df-ne 2939 |
This theorem is referenced by: nelelne 3039 elnelne2 3056 elneeldif 3961 elpwdifsn 4791 ac5num 10033 infpssrlem4 10303 fpwwe2lem12 10639 zgt1rpn0n1 13019 cats1un 14675 dprdfadd 19931 dprdcntz2 19949 lbsextlem4 20919 lindff1 21594 hauscmplem 23130 fileln0 23574 zcld 24549 dvcnvlem 25728 ppinprm 26892 chtnprm 26894 footexALT 28236 footexlem1 28237 footexlem2 28238 foot 28240 colperpexlem3 28250 mideulem2 28252 opphllem 28253 opphllem2 28266 lnopp2hpgb 28281 colhp 28288 lmieu 28302 trgcopy 28322 trgcopyeulem 28323 cycpmco2lem1 32555 cycpmco2 32562 cyc3genpmlem 32580 linds2eq 32771 elrspunsn 32821 mxidlnzr 32857 lindsunlem 32997 fedgmul 33004 extdg1id 33030 ordtconnlem1 33202 esum2dlem 33388 subfacp1lem5 34473 heiborlem6 36987 llnle 38692 lplnle 38714 lhpexle1lem 39181 cdleme18b 39466 cdlemg46 39909 cdlemh 39991 bcc0 43401 fnchoice 44015 climxrre 44764 stoweidlem43 45057 zneoALTV 46635 |
Copyright terms: Public domain | W3C validator |