| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq 2858 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
| 2 | 1 | neqned 2939 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-ne 2933 |
| This theorem is referenced by: nelelne 3031 elnelne2 3048 elneeldif 3940 elpwdifsn 4765 f1ounsn 7264 ac5num 10048 infpssrlem4 10318 fpwwe2lem12 10654 zgt1rpn0n1 13048 cats1un 14737 dprdfadd 20001 dprdcntz2 20019 lbsextlem4 21120 lindff1 21778 hauscmplem 23342 fileln0 23786 zcld 24751 dvcnvlem 25930 ppinprm 27112 chtnprm 27114 footexALT 28643 footexlem1 28644 footexlem2 28645 foot 28647 colperpexlem3 28657 mideulem2 28659 opphllem 28660 opphllem2 28673 lnopp2hpgb 28688 colhp 28695 lmieu 28709 trgcopy 28729 trgcopyeulem 28730 cycpmco2lem1 33083 cycpmco2 33090 cyc3genpmlem 33108 unitnz 33180 fracfld 33248 linds2eq 33342 elrspunsn 33390 mxidlnzr 33428 lindsunlem 33610 fedgmul 33617 extdg1id 33653 2sqr3minply 33760 cos9thpiminplylem2 33763 ordtconnlem1 33901 esum2dlem 34069 subfacp1lem5 35152 heiborlem6 37786 llnle 39483 lplnle 39505 lhpexle1lem 39972 cdleme18b 40257 cdlemg46 40700 cdlemh 40782 ine1 42310 bcc0 44312 fnchoice 45001 climxrre 45727 stoweidlem43 46020 zneoALTV 47631 oppfrcllem 49023 oppfrcl2 49025 |
| Copyright terms: Public domain | W3C validator |