![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq 2868 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
2 | 1 | neqned 2953 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-ne 2947 |
This theorem is referenced by: nelelne 3047 elnelne2 3064 elneeldif 3990 elpwdifsn 4814 ac5num 10105 infpssrlem4 10375 fpwwe2lem12 10711 zgt1rpn0n1 13098 cats1un 14769 dprdfadd 20064 dprdcntz2 20082 lbsextlem4 21186 lindff1 21863 hauscmplem 23435 fileln0 23879 zcld 24854 dvcnvlem 26034 ppinprm 27213 chtnprm 27215 footexALT 28744 footexlem1 28745 footexlem2 28746 foot 28748 colperpexlem3 28758 mideulem2 28760 opphllem 28761 opphllem2 28774 lnopp2hpgb 28789 colhp 28796 lmieu 28810 trgcopy 28830 trgcopyeulem 28831 cycpmco2lem1 33119 cycpmco2 33126 cyc3genpmlem 33144 unitnz 33219 fracfld 33275 linds2eq 33374 elrspunsn 33422 mxidlnzr 33460 lindsunlem 33637 fedgmul 33644 extdg1id 33676 2sqr3minply 33738 ordtconnlem1 33870 esum2dlem 34056 subfacp1lem5 35152 heiborlem6 37776 llnle 39475 lplnle 39497 lhpexle1lem 39964 cdleme18b 40249 cdlemg46 40692 cdlemh 40774 ine1 42303 bcc0 44309 fnchoice 44929 climxrre 45671 stoweidlem43 45964 zneoALTV 47543 |
Copyright terms: Public domain | W3C validator |