Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq 2863 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
2 | 1 | neqned 2949 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-ne 2943 |
This theorem is referenced by: nelelne 3042 elnelne2 3059 elneeldif 3897 elpwdifsn 4719 ac5num 9723 infpssrlem4 9993 fpwwe2lem12 10329 zgt1rpn0n1 12700 cats1un 14362 dprdfadd 19538 dprdcntz2 19556 lbsextlem4 20338 lindff1 20937 hauscmplem 22465 fileln0 22909 zcld 23882 dvcnvlem 25045 ppinprm 26206 chtnprm 26208 footexALT 26983 footexlem1 26984 footexlem2 26985 foot 26987 colperpexlem3 26997 mideulem2 26999 opphllem 27000 opphllem2 27013 lnopp2hpgb 27028 colhp 27035 lmieu 27049 trgcopy 27069 trgcopyeulem 27070 cycpmco2lem1 31295 cycpmco2 31302 cyc3genpmlem 31320 linds2eq 31477 mxidlnzr 31541 lindsunlem 31607 fedgmul 31614 extdg1id 31640 ordtconnlem1 31776 esum2dlem 31960 subfacp1lem5 33046 heiborlem6 35901 llnle 37459 lplnle 37481 lhpexle1lem 37948 cdleme18b 38233 cdlemg46 38676 cdlemh 38758 bcc0 41847 fnchoice 42461 climxrre 43181 stoweidlem43 43474 zneoALTV 45009 |
Copyright terms: Public domain | W3C validator |