| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq 2852 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
| 2 | 1 | neqned 2932 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-ne 2926 |
| This theorem is referenced by: nelelne 3024 elnelne2 3041 elneeldif 3917 elpwdifsn 4740 f1ounsn 7209 ac5num 9930 infpssrlem4 10200 fpwwe2lem12 10536 zgt1rpn0n1 12936 cats1un 14627 dprdfadd 19901 dprdcntz2 19919 lbsextlem4 21068 lindff1 21727 hauscmplem 23291 fileln0 23735 zcld 24700 dvcnvlem 25878 ppinprm 27060 chtnprm 27062 footexALT 28663 footexlem1 28664 footexlem2 28665 foot 28667 colperpexlem3 28677 mideulem2 28679 opphllem 28680 opphllem2 28693 lnopp2hpgb 28708 colhp 28715 lmieu 28729 trgcopy 28749 trgcopyeulem 28750 cycpmco2lem1 33069 cycpmco2 33076 cyc3genpmlem 33094 unitnz 33180 fracfld 33248 linds2eq 33319 elrspunsn 33367 mxidlnzr 33405 lindsunlem 33597 fedgmul 33604 extdg1id 33639 2sqr3minply 33753 cos9thpiminplylem2 33756 ordtconnlem1 33897 esum2dlem 34065 subfacp1lem5 35167 heiborlem6 37806 llnle 39507 lplnle 39529 lhpexle1lem 39996 cdleme18b 40281 cdlemg46 40724 cdlemh 40806 ine1 42297 bcc0 44323 fnchoice 45017 climxrre 45741 stoweidlem43 46034 zneoALTV 47663 oppfrcllem 49122 oppfrcl2 49124 eloppf 49128 |
| Copyright terms: Public domain | W3C validator |