| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq 2855 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
| 2 | 1 | neqned 2935 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-ne 2929 |
| This theorem is referenced by: nelelne 3027 elnelne2 3044 elneeldif 3911 elpwdifsn 4738 f1ounsn 7206 ac5num 9927 infpssrlem4 10197 fpwwe2lem12 10533 zgt1rpn0n1 12933 cats1un 14628 dprdfadd 19934 dprdcntz2 19952 lbsextlem4 21098 lindff1 21757 hauscmplem 23321 fileln0 23765 zcld 24729 dvcnvlem 25907 ppinprm 27089 chtnprm 27091 footexALT 28696 footexlem1 28697 footexlem2 28698 foot 28700 colperpexlem3 28710 mideulem2 28712 opphllem 28713 opphllem2 28726 lnopp2hpgb 28741 colhp 28748 lmieu 28762 trgcopy 28782 trgcopyeulem 28783 cycpmco2lem1 33095 cycpmco2 33102 cyc3genpmlem 33120 unitnz 33206 fracfld 33274 linds2eq 33346 elrspunsn 33394 mxidlnzr 33432 lindsunlem 33637 fedgmul 33644 extdg1id 33679 2sqr3minply 33793 cos9thpiminplylem2 33796 ordtconnlem1 33937 esum2dlem 34105 subfacp1lem5 35228 heiborlem6 37855 llnle 39616 lplnle 39638 lhpexle1lem 40105 cdleme18b 40390 cdlemg46 40833 cdlemh 40915 ine1 42406 bcc0 44432 fnchoice 45125 climxrre 45847 stoweidlem43 46140 zneoALTV 47768 oppfrcllem 49227 oppfrcl2 49229 eloppf 49233 |
| Copyright terms: Public domain | W3C validator |