| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq 2852 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
| 2 | 1 | neqned 2932 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-ne 2926 |
| This theorem is referenced by: nelelne 3024 elnelne2 3041 elneeldif 3925 elpwdifsn 4749 f1ounsn 7229 ac5num 9965 infpssrlem4 10235 fpwwe2lem12 10571 zgt1rpn0n1 12970 cats1un 14662 dprdfadd 19936 dprdcntz2 19954 lbsextlem4 21103 lindff1 21762 hauscmplem 23326 fileln0 23770 zcld 24735 dvcnvlem 25913 ppinprm 27095 chtnprm 27097 footexALT 28698 footexlem1 28699 footexlem2 28700 foot 28702 colperpexlem3 28712 mideulem2 28714 opphllem 28715 opphllem2 28728 lnopp2hpgb 28743 colhp 28750 lmieu 28764 trgcopy 28784 trgcopyeulem 28785 cycpmco2lem1 33098 cycpmco2 33105 cyc3genpmlem 33123 unitnz 33206 fracfld 33274 linds2eq 33345 elrspunsn 33393 mxidlnzr 33431 lindsunlem 33613 fedgmul 33620 extdg1id 33654 2sqr3minply 33763 cos9thpiminplylem2 33766 ordtconnlem1 33907 esum2dlem 34075 subfacp1lem5 35164 heiborlem6 37803 llnle 39505 lplnle 39527 lhpexle1lem 39994 cdleme18b 40279 cdlemg46 40722 cdlemh 40804 ine1 42295 bcc0 44322 fnchoice 45016 climxrre 45741 stoweidlem43 46034 zneoALTV 47663 oppfrcllem 49109 oppfrcl2 49111 eloppf 49115 |
| Copyright terms: Public domain | W3C validator |