| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq 2852 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
| 2 | 1 | neqned 2932 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-ne 2926 |
| This theorem is referenced by: nelelne 3024 elnelne2 3041 elneeldif 3928 elpwdifsn 4753 f1ounsn 7247 ac5num 9989 infpssrlem4 10259 fpwwe2lem12 10595 zgt1rpn0n1 12994 cats1un 14686 dprdfadd 19952 dprdcntz2 19970 lbsextlem4 21071 lindff1 21729 hauscmplem 23293 fileln0 23737 zcld 24702 dvcnvlem 25880 ppinprm 27062 chtnprm 27064 footexALT 28645 footexlem1 28646 footexlem2 28647 foot 28649 colperpexlem3 28659 mideulem2 28661 opphllem 28662 opphllem2 28675 lnopp2hpgb 28690 colhp 28697 lmieu 28711 trgcopy 28731 trgcopyeulem 28732 cycpmco2lem1 33083 cycpmco2 33090 cyc3genpmlem 33108 unitnz 33190 fracfld 33258 linds2eq 33352 elrspunsn 33400 mxidlnzr 33438 lindsunlem 33620 fedgmul 33627 extdg1id 33661 2sqr3minply 33770 cos9thpiminplylem2 33773 ordtconnlem1 33914 esum2dlem 34082 subfacp1lem5 35171 heiborlem6 37810 llnle 39512 lplnle 39534 lhpexle1lem 40001 cdleme18b 40286 cdlemg46 40729 cdlemh 40811 ine1 42302 bcc0 44329 fnchoice 45023 climxrre 45748 stoweidlem43 46041 zneoALTV 47670 oppfrcllem 49116 oppfrcl2 49118 eloppf 49122 |
| Copyright terms: Public domain | W3C validator |