| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
| Ref | Expression |
|---|---|
| nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelneq 2853 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
| 2 | 1 | neqned 2933 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-ne 2927 |
| This theorem is referenced by: nelelne 3025 elnelne2 3042 elneeldif 3931 elpwdifsn 4756 f1ounsn 7250 ac5num 9996 infpssrlem4 10266 fpwwe2lem12 10602 zgt1rpn0n1 13001 cats1un 14693 dprdfadd 19959 dprdcntz2 19977 lbsextlem4 21078 lindff1 21736 hauscmplem 23300 fileln0 23744 zcld 24709 dvcnvlem 25887 ppinprm 27069 chtnprm 27071 footexALT 28652 footexlem1 28653 footexlem2 28654 foot 28656 colperpexlem3 28666 mideulem2 28668 opphllem 28669 opphllem2 28682 lnopp2hpgb 28697 colhp 28704 lmieu 28718 trgcopy 28738 trgcopyeulem 28739 cycpmco2lem1 33090 cycpmco2 33097 cyc3genpmlem 33115 unitnz 33197 fracfld 33265 linds2eq 33359 elrspunsn 33407 mxidlnzr 33445 lindsunlem 33627 fedgmul 33634 extdg1id 33668 2sqr3minply 33777 cos9thpiminplylem2 33780 ordtconnlem1 33921 esum2dlem 34089 subfacp1lem5 35178 heiborlem6 37817 llnle 39519 lplnle 39541 lhpexle1lem 40008 cdleme18b 40293 cdlemg46 40736 cdlemh 40818 ine1 42309 bcc0 44336 fnchoice 45030 climxrre 45755 stoweidlem43 46048 zneoALTV 47674 oppfrcllem 49120 oppfrcl2 49122 eloppf 49126 |
| Copyright terms: Public domain | W3C validator |