![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.) (Proof shortened by Wolf Lammen, 14-May-2023.) |
Ref | Expression |
---|---|
nelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq 2862 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → ¬ 𝐴 = 𝐵) | |
2 | 1 | neqned 2944 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2105 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 df-ne 2938 |
This theorem is referenced by: nelelne 3038 elnelne2 3055 elneeldif 3976 elpwdifsn 4793 f1ounsn 7291 ac5num 10073 infpssrlem4 10343 fpwwe2lem12 10679 zgt1rpn0n1 13073 cats1un 14755 dprdfadd 20054 dprdcntz2 20072 lbsextlem4 21180 lindff1 21857 hauscmplem 23429 fileln0 23873 zcld 24848 dvcnvlem 26028 ppinprm 27209 chtnprm 27211 footexALT 28740 footexlem1 28741 footexlem2 28742 foot 28744 colperpexlem3 28754 mideulem2 28756 opphllem 28757 opphllem2 28770 lnopp2hpgb 28785 colhp 28792 lmieu 28806 trgcopy 28826 trgcopyeulem 28827 cycpmco2lem1 33128 cycpmco2 33135 cyc3genpmlem 33153 unitnz 33228 fracfld 33289 linds2eq 33388 elrspunsn 33436 mxidlnzr 33474 lindsunlem 33651 fedgmul 33658 extdg1id 33690 2sqr3minply 33752 ordtconnlem1 33884 esum2dlem 34072 subfacp1lem5 35168 heiborlem6 37802 llnle 39500 lplnle 39522 lhpexle1lem 39989 cdleme18b 40274 cdlemg46 40717 cdlemh 40799 ine1 42327 bcc0 44335 fnchoice 44966 climxrre 45705 stoweidlem43 45998 zneoALTV 47593 |
Copyright terms: Public domain | W3C validator |