| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for frgrncvvdeq 30288. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
| Ref | Expression |
|---|---|
| frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
| frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
| frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
| frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
| frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
| frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
| Ref | Expression |
|---|---|
| frgrncvvdeqlem7 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrncvvdeq.v1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrncvvdeq.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | frgrncvvdeq.nx | . . . 4 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
| 4 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
| 5 | frgrncvvdeq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 6 | frgrncvvdeq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 7 | frgrncvvdeq.ne | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 8 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
| 9 | frgrncvvdeq.f | . . . 4 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
| 10 | frgrncvvdeq.a | . . . 4 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem5 30282 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
| 12 | fvex 6853 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
| 13 | 12 | snid 4622 | . . . 4 ⊢ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)} |
| 14 | eleq2 2817 | . . . . . 6 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝐴‘𝑥) ∈ {(𝐴‘𝑥)} ↔ (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))) | |
| 15 | 14 | biimpa 476 | . . . . 5 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
| 16 | elin 3927 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ↔ ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem1 30278 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
| 18 | df-nel 3030 | . . . . . . . . . 10 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ 𝑁) | |
| 19 | nelelne 3024 | . . . . . . . . . 10 ⊢ (¬ 𝑋 ∈ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) | |
| 20 | 18, 19 | sylbi 217 | . . . . . . . . 9 ⊢ (𝑋 ∉ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
| 21 | 17, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
| 22 | 21 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
| 23 | 22 | com12 32 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ 𝑁 → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
| 24 | 16, 23 | simplbiim 504 | . . . . 5 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
| 25 | 15, 24 | syl 17 | . . . 4 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
| 26 | 13, 25 | mpan2 691 | . . 3 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
| 27 | 11, 26 | mpcom 38 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋) |
| 28 | 27 | ralrimiva 3125 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∀wral 3044 ∩ cin 3910 {csn 4585 {cpr 4587 ↦ cmpt 5183 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 Vtxcvtx 28976 Edgcedg 29027 NeighbVtx cnbgr 29312 FriendGraph cfrgr 30237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 df-edg 29028 df-upgr 29062 df-umgr 29063 df-usgr 29131 df-nbgr 29313 df-frgr 30238 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |