Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for frgrncvvdeq 28405. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem7 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrncvvdeq.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrncvvdeq.nx | . . . 4 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
5 | frgrncvvdeq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | frgrncvvdeq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
7 | frgrncvvdeq.ne | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
8 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
9 | frgrncvvdeq.f | . . . 4 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
10 | frgrncvvdeq.a | . . . 4 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem5 28399 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
12 | fvex 6739 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
13 | 12 | snid 4586 | . . . 4 ⊢ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)} |
14 | eleq2 2827 | . . . . . 6 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝐴‘𝑥) ∈ {(𝐴‘𝑥)} ↔ (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))) | |
15 | 14 | biimpa 480 | . . . . 5 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
16 | elin 3891 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ↔ ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem1 28395 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
18 | df-nel 3048 | . . . . . . . . . 10 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ 𝑁) | |
19 | nelelne 3041 | . . . . . . . . . 10 ⊢ (¬ 𝑋 ∈ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) | |
20 | 18, 19 | sylbi 220 | . . . . . . . . 9 ⊢ (𝑋 ∉ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
21 | 17, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
22 | 21 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
23 | 22 | com12 32 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ 𝑁 → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
24 | 16, 23 | simplbiim 508 | . . . . 5 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
25 | 15, 24 | syl 17 | . . . 4 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
26 | 13, 25 | mpan2 691 | . . 3 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
27 | 11, 26 | mpcom 38 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋) |
28 | 27 | ralrimiva 3106 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∉ wnel 3047 ∀wral 3062 ∩ cin 3874 {csn 4550 {cpr 4552 ↦ cmpt 5144 ‘cfv 6389 ℩crio 7178 (class class class)co 7222 Vtxcvtx 27100 Edgcedg 27151 NeighbVtx cnbgr 27433 FriendGraph cfrgr 28354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-2o 8212 df-oadd 8215 df-er 8400 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-dju 9530 df-card 9568 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-nn 11844 df-2 11906 df-n0 12104 df-xnn0 12176 df-z 12190 df-uz 12452 df-fz 13109 df-hash 13910 df-edg 27152 df-upgr 27186 df-umgr 27187 df-usgr 27255 df-nbgr 27434 df-frgr 28355 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |