![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for frgrncvvdeq 30341. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem7 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrncvvdeq.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrncvvdeq.nx | . . . 4 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
5 | frgrncvvdeq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | frgrncvvdeq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
7 | frgrncvvdeq.ne | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
8 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
9 | frgrncvvdeq.f | . . . 4 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
10 | frgrncvvdeq.a | . . . 4 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem5 30335 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
12 | fvex 6933 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
13 | 12 | snid 4684 | . . . 4 ⊢ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)} |
14 | eleq2 2833 | . . . . . 6 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝐴‘𝑥) ∈ {(𝐴‘𝑥)} ↔ (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))) | |
15 | 14 | biimpa 476 | . . . . 5 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
16 | elin 3992 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ↔ ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem1 30331 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
18 | df-nel 3053 | . . . . . . . . . 10 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ 𝑁) | |
19 | nelelne 3047 | . . . . . . . . . 10 ⊢ (¬ 𝑋 ∈ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) | |
20 | 18, 19 | sylbi 217 | . . . . . . . . 9 ⊢ (𝑋 ∉ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
21 | 17, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
22 | 21 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
23 | 22 | com12 32 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ 𝑁 → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
24 | 16, 23 | simplbiim 504 | . . . . 5 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
25 | 15, 24 | syl 17 | . . . 4 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
26 | 13, 25 | mpan2 690 | . . 3 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
27 | 11, 26 | mpcom 38 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋) |
28 | 27 | ralrimiva 3152 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∀wral 3067 ∩ cin 3975 {csn 4648 {cpr 4650 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Vtxcvtx 29031 Edgcedg 29082 NeighbVtx cnbgr 29367 FriendGraph cfrgr 30290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 df-edg 29083 df-upgr 29117 df-umgr 29118 df-usgr 29186 df-nbgr 29368 df-frgr 30291 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |