![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for frgrncvvdeq 29827. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem7 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrncvvdeq.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrncvvdeq.nx | . . . 4 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
5 | frgrncvvdeq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | frgrncvvdeq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
7 | frgrncvvdeq.ne | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
8 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
9 | frgrncvvdeq.f | . . . 4 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
10 | frgrncvvdeq.a | . . . 4 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem5 29821 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
12 | fvex 6905 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
13 | 12 | snid 4665 | . . . 4 ⊢ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)} |
14 | eleq2 2820 | . . . . . 6 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝐴‘𝑥) ∈ {(𝐴‘𝑥)} ↔ (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))) | |
15 | 14 | biimpa 475 | . . . . 5 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
16 | elin 3965 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ↔ ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem1 29817 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
18 | df-nel 3045 | . . . . . . . . . 10 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ 𝑁) | |
19 | nelelne 3039 | . . . . . . . . . 10 ⊢ (¬ 𝑋 ∈ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) | |
20 | 18, 19 | sylbi 216 | . . . . . . . . 9 ⊢ (𝑋 ∉ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
21 | 17, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
22 | 21 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
23 | 22 | com12 32 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ 𝑁 → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
24 | 16, 23 | simplbiim 503 | . . . . 5 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
25 | 15, 24 | syl 17 | . . . 4 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
26 | 13, 25 | mpan2 687 | . . 3 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
27 | 11, 26 | mpcom 38 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋) |
28 | 27 | ralrimiva 3144 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∉ wnel 3044 ∀wral 3059 ∩ cin 3948 {csn 4629 {cpr 4631 ↦ cmpt 5232 ‘cfv 6544 ℩crio 7368 (class class class)co 7413 Vtxcvtx 28521 Edgcedg 28572 NeighbVtx cnbgr 28854 FriendGraph cfrgr 29776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-n0 12479 df-xnn0 12551 df-z 12565 df-uz 12829 df-fz 13491 df-hash 14297 df-edg 28573 df-upgr 28607 df-umgr 28608 df-usgr 28676 df-nbgr 28855 df-frgr 29777 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |