MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem7 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem7 27682
Description: Lemma 7 for frgrncvvdeq 27686. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem7 (𝜑 → ∀𝑥𝐷 (𝐴𝑥) ≠ 𝑋)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦   𝑦,𝐸   𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem7
StepHypRef Expression
1 frgrncvvdeq.v1 . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . . 4 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . . 4 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . . 4 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . . 4 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . . 4 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . . 4 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . . 4 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . . 4 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . . 4 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem5 27680 . . 3 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
12 fvex 6450 . . . . 5 (𝐴𝑥) ∈ V
1312snid 4431 . . . 4 (𝐴𝑥) ∈ {(𝐴𝑥)}
14 eleq2 2895 . . . . . 6 ({(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝐴𝑥) ∈ {(𝐴𝑥)} ↔ (𝐴𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)))
1514biimpa 470 . . . . 5 (({(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴𝑥) ∈ {(𝐴𝑥)}) → (𝐴𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
16 elin 4025 . . . . . 6 ((𝐴𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ↔ ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴𝑥) ∈ 𝑁))
171, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem1 27676 . . . . . . . . 9 (𝜑𝑋𝑁)
18 df-nel 3103 . . . . . . . . . 10 (𝑋𝑁 ↔ ¬ 𝑋𝑁)
19 nelelne 3097 . . . . . . . . . 10 𝑋𝑁 → ((𝐴𝑥) ∈ 𝑁 → (𝐴𝑥) ≠ 𝑋))
2018, 19sylbi 209 . . . . . . . . 9 (𝑋𝑁 → ((𝐴𝑥) ∈ 𝑁 → (𝐴𝑥) ≠ 𝑋))
2117, 20syl 17 . . . . . . . 8 (𝜑 → ((𝐴𝑥) ∈ 𝑁 → (𝐴𝑥) ≠ 𝑋))
2221adantr 474 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝐴𝑥) ∈ 𝑁 → (𝐴𝑥) ≠ 𝑋))
2322com12 32 . . . . . 6 ((𝐴𝑥) ∈ 𝑁 → ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋))
2416, 23simplbiim 500 . . . . 5 ((𝐴𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋))
2515, 24syl 17 . . . 4 (({(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴𝑥) ∈ {(𝐴𝑥)}) → ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋))
2613, 25mpan2 682 . . 3 ({(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋))
2711, 26mpcom 38 . 2 ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋)
2827ralrimiva 3175 1 (𝜑 → ∀𝑥𝐷 (𝐴𝑥) ≠ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  wnel 3102  wral 3117  cin 3797  {csn 4399  {cpr 4401  cmpt 4954  cfv 6127  crio 6870  (class class class)co 6910  Vtxcvtx 26301  Edgcedg 26352   NeighbVtx cnbgr 26636   FriendGraph cfrgr 27633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-fz 12627  df-hash 13418  df-edg 26353  df-upgr 26387  df-umgr 26388  df-usgr 26457  df-nbgr 26637  df-frgr 27634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator