![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for frgrncvvdeq 29316. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem7 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v1 | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrncvvdeq.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrncvvdeq.nx | . . . 4 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
5 | frgrncvvdeq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | frgrncvvdeq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
7 | frgrncvvdeq.ne | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
8 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
9 | frgrncvvdeq.f | . . . 4 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
10 | frgrncvvdeq.a | . . . 4 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem5 29310 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
12 | fvex 6860 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
13 | 12 | snid 4627 | . . . 4 ⊢ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)} |
14 | eleq2 2821 | . . . . . 6 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝐴‘𝑥) ∈ {(𝐴‘𝑥)} ↔ (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))) | |
15 | 14 | biimpa 477 | . . . . 5 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → (𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
16 | elin 3929 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ↔ ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem1 29306 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
18 | df-nel 3046 | . . . . . . . . . 10 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ 𝑁) | |
19 | nelelne 3040 | . . . . . . . . . 10 ⊢ (¬ 𝑋 ∈ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) | |
20 | 18, 19 | sylbi 216 | . . . . . . . . 9 ⊢ (𝑋 ∉ 𝑁 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
21 | 17, 20 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
22 | 21 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) ∈ 𝑁 → (𝐴‘𝑥) ≠ 𝑋)) |
23 | 22 | com12 32 | . . . . . 6 ⊢ ((𝐴‘𝑥) ∈ 𝑁 → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
24 | 16, 23 | simplbiim 505 | . . . . 5 ⊢ ((𝐴‘𝑥) ∈ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
25 | 15, 24 | syl 17 | . . . 4 ⊢ (({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) ∧ (𝐴‘𝑥) ∈ {(𝐴‘𝑥)}) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
26 | 13, 25 | mpan2 689 | . . 3 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋)) |
27 | 11, 26 | mpcom 38 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ≠ 𝑋) |
28 | 27 | ralrimiva 3139 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 ∉ wnel 3045 ∀wral 3060 ∩ cin 3912 {csn 4591 {cpr 4593 ↦ cmpt 5193 ‘cfv 6501 ℩crio 7317 (class class class)co 7362 Vtxcvtx 28010 Edgcedg 28061 NeighbVtx cnbgr 28343 FriendGraph cfrgr 29265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11116 ax-resscn 11117 ax-1cn 11118 ax-icn 11119 ax-addcl 11120 ax-addrcl 11121 ax-mulcl 11122 ax-mulrcl 11123 ax-mulcom 11124 ax-addass 11125 ax-mulass 11126 ax-distr 11127 ax-i2m1 11128 ax-1ne0 11129 ax-1rid 11130 ax-rnegex 11131 ax-rrecex 11132 ax-cnre 11133 ax-pre-lttri 11134 ax-pre-lttrn 11135 ax-pre-ltadd 11136 ax-pre-mulgt0 11137 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-pss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-2o 8418 df-oadd 8421 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-dju 9846 df-card 9884 df-pnf 11200 df-mnf 11201 df-xr 11202 df-ltxr 11203 df-le 11204 df-sub 11396 df-neg 11397 df-nn 12163 df-2 12225 df-n0 12423 df-xnn0 12495 df-z 12509 df-uz 12773 df-fz 13435 df-hash 14241 df-edg 28062 df-upgr 28096 df-umgr 28097 df-usgr 28165 df-nbgr 28344 df-frgr 29266 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |