| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feldmfvelcdm | Structured version Visualization version GIF version | ||
| Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025.) |
| Ref | Expression |
|---|---|
| feldmfvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 ↔ (𝐹‘𝑋) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffvelcdmda 7056 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐵) |
| 3 | 2 | ex 412 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ 𝐵)) |
| 4 | df-nel 3030 | . . . 4 ⊢ (∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵) | |
| 5 | nelelne 3024 | . . . 4 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝑋) ∈ 𝐵 → (𝐹‘𝑋) ≠ ∅)) | |
| 6 | 4, 5 | sylbi 217 | . . 3 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝑋) ∈ 𝐵 → (𝐹‘𝑋) ≠ ∅)) |
| 7 | fdm 6697 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 8 | fvfundmfvn0 6901 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) | |
| 9 | simprl 770 | . . . . . 6 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ dom 𝐹) | |
| 10 | simpl 482 | . . . . . 6 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → dom 𝐹 = 𝐴) | |
| 11 | 9, 10 | eleqtrd 2830 | . . . . 5 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ 𝐴) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → 𝑋 ∈ 𝐴)) |
| 13 | 7, 8, 12 | syl2im 40 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝑋) ≠ ∅ → 𝑋 ∈ 𝐴)) |
| 14 | 6, 13 | sylan9r 508 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → ((𝐹‘𝑋) ∈ 𝐵 → 𝑋 ∈ 𝐴)) |
| 15 | 3, 14 | impbid 212 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 ↔ (𝐹‘𝑋) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∅c0 4296 {csn 4589 dom cdm 5638 ↾ cres 5640 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |