![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feldmfvelcdm | Structured version Visualization version GIF version |
Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025.) |
Ref | Expression |
---|---|
feldmfvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 ↔ (𝐹‘𝑋) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffvelcdmda 7118 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐵) |
3 | 2 | ex 412 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ 𝐵)) |
4 | df-nel 3053 | . . . 4 ⊢ (∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵) | |
5 | nelelne 3047 | . . . 4 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝑋) ∈ 𝐵 → (𝐹‘𝑋) ≠ ∅)) | |
6 | 4, 5 | sylbi 217 | . . 3 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝑋) ∈ 𝐵 → (𝐹‘𝑋) ≠ ∅)) |
7 | fdm 6756 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
8 | fvfundmfvn0 6963 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) | |
9 | simprl 770 | . . . . . 6 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ dom 𝐹) | |
10 | simpl 482 | . . . . . 6 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → dom 𝐹 = 𝐴) | |
11 | 9, 10 | eleqtrd 2846 | . . . . 5 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ 𝐴) |
12 | 11 | ex 412 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → 𝑋 ∈ 𝐴)) |
13 | 7, 8, 12 | syl2im 40 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝑋) ≠ ∅ → 𝑋 ∈ 𝐴)) |
14 | 6, 13 | sylan9r 508 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → ((𝐹‘𝑋) ∈ 𝐵 → 𝑋 ∈ 𝐴)) |
15 | 3, 14 | impbid 212 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 ↔ (𝐹‘𝑋) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∅c0 4352 {csn 4648 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: uspgrimprop 47757 |
Copyright terms: Public domain | W3C validator |