MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feldmfvelcdm Structured version   Visualization version   GIF version

Theorem feldmfvelcdm 7081
Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025.)
Assertion
Ref Expression
feldmfvelcdm ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 ↔ (𝐹𝑋) ∈ 𝐵))

Proof of Theorem feldmfvelcdm
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → 𝐹:𝐴𝐵)
21ffvelcdmda 7079 . . 3 (((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) ∧ 𝑋𝐴) → (𝐹𝑋) ∈ 𝐵)
32ex 412 . 2 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 → (𝐹𝑋) ∈ 𝐵))
4 df-nel 3038 . . . 4 (∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵)
5 nelelne 3032 . . . 4 (¬ ∅ ∈ 𝐵 → ((𝐹𝑋) ∈ 𝐵 → (𝐹𝑋) ≠ ∅))
64, 5sylbi 217 . . 3 (∅ ∉ 𝐵 → ((𝐹𝑋) ∈ 𝐵 → (𝐹𝑋) ≠ ∅))
7 fdm 6720 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
8 fvfundmfvn0 6924 . . . 4 ((𝐹𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})))
9 simprl 770 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ dom 𝐹)
10 simpl 482 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → dom 𝐹 = 𝐴)
119, 10eleqtrd 2837 . . . . 5 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋𝐴)
1211ex 412 . . . 4 (dom 𝐹 = 𝐴 → ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → 𝑋𝐴))
137, 8, 12syl2im 40 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝑋) ≠ ∅ → 𝑋𝐴))
146, 13sylan9r 508 . 2 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → ((𝐹𝑋) ∈ 𝐵𝑋𝐴))
153, 14impbid 212 1 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 ↔ (𝐹𝑋) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wnel 3037  c0 4313  {csn 4606  dom cdm 5659  cres 5661  Fun wfun 6530  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator