MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feldmfvelcdm Structured version   Visualization version   GIF version

Theorem feldmfvelcdm 7019
Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025.)
Assertion
Ref Expression
feldmfvelcdm ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 ↔ (𝐹𝑋) ∈ 𝐵))

Proof of Theorem feldmfvelcdm
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → 𝐹:𝐴𝐵)
21ffvelcdmda 7017 . . 3 (((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) ∧ 𝑋𝐴) → (𝐹𝑋) ∈ 𝐵)
32ex 412 . 2 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 → (𝐹𝑋) ∈ 𝐵))
4 df-nel 3033 . . . 4 (∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵)
5 nelelne 3027 . . . 4 (¬ ∅ ∈ 𝐵 → ((𝐹𝑋) ∈ 𝐵 → (𝐹𝑋) ≠ ∅))
64, 5sylbi 217 . . 3 (∅ ∉ 𝐵 → ((𝐹𝑋) ∈ 𝐵 → (𝐹𝑋) ≠ ∅))
7 fdm 6660 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
8 fvfundmfvn0 6862 . . . 4 ((𝐹𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})))
9 simprl 770 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ dom 𝐹)
10 simpl 482 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → dom 𝐹 = 𝐴)
119, 10eleqtrd 2833 . . . . 5 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋𝐴)
1211ex 412 . . . 4 (dom 𝐹 = 𝐴 → ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → 𝑋𝐴))
137, 8, 12syl2im 40 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝑋) ≠ ∅ → 𝑋𝐴))
146, 13sylan9r 508 . 2 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → ((𝐹𝑋) ∈ 𝐵𝑋𝐴))
153, 14impbid 212 1 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 ↔ (𝐹𝑋) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wnel 3032  c0 4280  {csn 4573  dom cdm 5614  cres 5616  Fun wfun 6475  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator