MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feldmfvelcdm Structured version   Visualization version   GIF version

Theorem feldmfvelcdm 7105
Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025.)
Assertion
Ref Expression
feldmfvelcdm ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 ↔ (𝐹𝑋) ∈ 𝐵))

Proof of Theorem feldmfvelcdm
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → 𝐹:𝐴𝐵)
21ffvelcdmda 7103 . . 3 (((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) ∧ 𝑋𝐴) → (𝐹𝑋) ∈ 𝐵)
32ex 412 . 2 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 → (𝐹𝑋) ∈ 𝐵))
4 df-nel 3046 . . . 4 (∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵)
5 nelelne 3040 . . . 4 (¬ ∅ ∈ 𝐵 → ((𝐹𝑋) ∈ 𝐵 → (𝐹𝑋) ≠ ∅))
64, 5sylbi 217 . . 3 (∅ ∉ 𝐵 → ((𝐹𝑋) ∈ 𝐵 → (𝐹𝑋) ≠ ∅))
7 fdm 6744 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
8 fvfundmfvn0 6948 . . . 4 ((𝐹𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})))
9 simprl 770 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ dom 𝐹)
10 simpl 482 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → dom 𝐹 = 𝐴)
119, 10eleqtrd 2842 . . . . 5 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋𝐴)
1211ex 412 . . . 4 (dom 𝐹 = 𝐴 → ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → 𝑋𝐴))
137, 8, 12syl2im 40 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝑋) ≠ ∅ → 𝑋𝐴))
146, 13sylan9r 508 . 2 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → ((𝐹𝑋) ∈ 𝐵𝑋𝐴))
153, 14impbid 212 1 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 ↔ (𝐹𝑋) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wnel 3045  c0 4332  {csn 4625  dom cdm 5684  cres 5686  Fun wfun 6554  wf 6556  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568
This theorem is referenced by:  uspgrimprop  47878
  Copyright terms: Public domain W3C validator