![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feldmfvelcdm | Structured version Visualization version GIF version |
Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025.) |
Ref | Expression |
---|---|
feldmfvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 ↔ (𝐹‘𝑋) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffvelcdmda 7104 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐵) |
3 | 2 | ex 412 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ 𝐵)) |
4 | df-nel 3045 | . . . 4 ⊢ (∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵) | |
5 | nelelne 3039 | . . . 4 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝑋) ∈ 𝐵 → (𝐹‘𝑋) ≠ ∅)) | |
6 | 4, 5 | sylbi 217 | . . 3 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝑋) ∈ 𝐵 → (𝐹‘𝑋) ≠ ∅)) |
7 | fdm 6746 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
8 | fvfundmfvn0 6950 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) | |
9 | simprl 771 | . . . . . 6 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ dom 𝐹) | |
10 | simpl 482 | . . . . . 6 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → dom 𝐹 = 𝐴) | |
11 | 9, 10 | eleqtrd 2841 | . . . . 5 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ 𝐴) |
12 | 11 | ex 412 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → 𝑋 ∈ 𝐴)) |
13 | 7, 8, 12 | syl2im 40 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝑋) ≠ ∅ → 𝑋 ∈ 𝐴)) |
14 | 6, 13 | sylan9r 508 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → ((𝐹‘𝑋) ∈ 𝐵 → 𝑋 ∈ 𝐴)) |
15 | 3, 14 | impbid 212 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 ↔ (𝐹‘𝑋) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∉ wnel 3044 ∅c0 4339 {csn 4631 dom cdm 5689 ↾ cres 5691 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: uspgrimprop 47811 |
Copyright terms: Public domain | W3C validator |