| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feldmfvelcdm | Structured version Visualization version GIF version | ||
| Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025.) |
| Ref | Expression |
|---|---|
| feldmfvelcdm | ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 ↔ (𝐹‘𝑋) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffvelcdmda 7103 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐵) |
| 3 | 2 | ex 412 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ 𝐵)) |
| 4 | df-nel 3046 | . . . 4 ⊢ (∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵) | |
| 5 | nelelne 3040 | . . . 4 ⊢ (¬ ∅ ∈ 𝐵 → ((𝐹‘𝑋) ∈ 𝐵 → (𝐹‘𝑋) ≠ ∅)) | |
| 6 | 4, 5 | sylbi 217 | . . 3 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝑋) ∈ 𝐵 → (𝐹‘𝑋) ≠ ∅)) |
| 7 | fdm 6744 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 8 | fvfundmfvn0 6948 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) | |
| 9 | simprl 770 | . . . . . 6 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ dom 𝐹) | |
| 10 | simpl 482 | . . . . . 6 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → dom 𝐹 = 𝐴) | |
| 11 | 9, 10 | eleqtrd 2842 | . . . . 5 ⊢ ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ 𝐴) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → 𝑋 ∈ 𝐴)) |
| 13 | 7, 8, 12 | syl2im 40 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹‘𝑋) ≠ ∅ → 𝑋 ∈ 𝐴)) |
| 14 | 6, 13 | sylan9r 508 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → ((𝐹‘𝑋) ∈ 𝐵 → 𝑋 ∈ 𝐴)) |
| 15 | 3, 14 | impbid 212 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∅ ∉ 𝐵) → (𝑋 ∈ 𝐴 ↔ (𝐹‘𝑋) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∉ wnel 3045 ∅c0 4332 {csn 4625 dom cdm 5684 ↾ cres 5686 Fun wfun 6554 ⟶wf 6556 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 |
| This theorem is referenced by: uspgrimprop 47878 |
| Copyright terms: Public domain | W3C validator |