MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feldmfvelcdm Structured version   Visualization version   GIF version

Theorem feldmfvelcdm 7120
Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025.)
Assertion
Ref Expression
feldmfvelcdm ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 ↔ (𝐹𝑋) ∈ 𝐵))

Proof of Theorem feldmfvelcdm
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → 𝐹:𝐴𝐵)
21ffvelcdmda 7118 . . 3 (((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) ∧ 𝑋𝐴) → (𝐹𝑋) ∈ 𝐵)
32ex 412 . 2 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 → (𝐹𝑋) ∈ 𝐵))
4 df-nel 3053 . . . 4 (∅ ∉ 𝐵 ↔ ¬ ∅ ∈ 𝐵)
5 nelelne 3047 . . . 4 (¬ ∅ ∈ 𝐵 → ((𝐹𝑋) ∈ 𝐵 → (𝐹𝑋) ≠ ∅))
64, 5sylbi 217 . . 3 (∅ ∉ 𝐵 → ((𝐹𝑋) ∈ 𝐵 → (𝐹𝑋) ≠ ∅))
7 fdm 6756 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
8 fvfundmfvn0 6963 . . . 4 ((𝐹𝑋) ≠ ∅ → (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})))
9 simprl 770 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋 ∈ dom 𝐹)
10 simpl 482 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → dom 𝐹 = 𝐴)
119, 10eleqtrd 2846 . . . . 5 ((dom 𝐹 = 𝐴 ∧ (𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋}))) → 𝑋𝐴)
1211ex 412 . . . 4 (dom 𝐹 = 𝐴 → ((𝑋 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝑋})) → 𝑋𝐴))
137, 8, 12syl2im 40 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝑋) ≠ ∅ → 𝑋𝐴))
146, 13sylan9r 508 . 2 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → ((𝐹𝑋) ∈ 𝐵𝑋𝐴))
153, 14impbid 212 1 ((𝐹:𝐴𝐵 ∧ ∅ ∉ 𝐵) → (𝑋𝐴 ↔ (𝐹𝑋) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wnel 3052  c0 4352  {csn 4648  dom cdm 5700  cres 5702  Fun wfun 6567  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  uspgrimprop  47757
  Copyright terms: Public domain W3C validator