MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2size Structured version   Visualization version   GIF version

Theorem finsumvtxdg2size 27015
Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is twice the size of the pseudograph. See equation (1) in section I.1 in [Bollobas] p. 4. Here, the "proof" is simply the statement "Since each edge has two endvertices, the sum of the degrees is exactly twice the number of edges". The formal proof of this theorem (for pseudographs) is much more complicated, taking also the used auxiliary theorems into account. The proof for a (finite) simple graph (see fusgr1th 27016) would be shorter, but nevertheless still laborious. Although this theorem would hold also for infinite pseudographs and pseudographs of infinite size, the proof of this most general version (see theorem "sumvtxdg2size" below) would require many more auxiliary theorems (e.g., the extension of the sum Σ over an arbitrary set).

I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021.)

Hypotheses
Ref Expression
sumvtxdg2size.v 𝑉 = (Vtx‘𝐺)
sumvtxdg2size.i 𝐼 = (iEdg‘𝐺)
sumvtxdg2size.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
finsumvtxdg2size ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉
Allowed substitution hints:   𝐷(𝑣)   𝐼(𝑣)

Proof of Theorem finsumvtxdg2size
Dummy variables 𝑒 𝑘 𝑛 𝑓 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgrop 26562 . . . 4 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
2 fvex 6551 . . . . . 6 (iEdg‘𝐺) ∈ V
3 fvex 6551 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) ∈ V
43resex 5780 . . . . . 6 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ V
5 eleq1 2870 . . . . . . . 8 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
65adantl 482 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
7 simpl 483 . . . . . . . . 9 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → 𝑘 = (Vtx‘𝐺))
8 oveq12 7025 . . . . . . . . . . 11 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑘VtxDeg𝑒) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
98fveq1d 6540 . . . . . . . . . 10 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
109adantr 481 . . . . . . . . 9 (((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
117, 10sumeq12dv 14896 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
12 fveq2 6538 . . . . . . . . . 10 (𝑒 = (iEdg‘𝐺) → (♯‘𝑒) = (♯‘(iEdg‘𝐺)))
1312oveq2d 7032 . . . . . . . . 9 (𝑒 = (iEdg‘𝐺) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1413adantl 482 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1511, 14eqeq12d 2810 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
166, 15imbi12d 346 . . . . . 6 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
17 eleq1 2870 . . . . . . . 8 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1817adantl 482 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
19 simpl 483 . . . . . . . . 9 ((𝑘 = 𝑤𝑒 = 𝑓) → 𝑘 = 𝑤)
20 oveq12 7025 . . . . . . . . . . . 12 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (𝑤VtxDeg𝑓))
21 df-ov 7019 . . . . . . . . . . . 12 (𝑤VtxDeg𝑓) = (VtxDeg‘⟨𝑤, 𝑓⟩)
2220, 21syl6eq 2847 . . . . . . . . . . 11 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑤, 𝑓⟩))
2322fveq1d 6540 . . . . . . . . . 10 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2423adantr 481 . . . . . . . . 9 (((𝑘 = 𝑤𝑒 = 𝑓) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2519, 24sumeq12dv 14896 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
26 fveq2 6538 . . . . . . . . . 10 (𝑒 = 𝑓 → (♯‘𝑒) = (♯‘𝑓))
2726oveq2d 7032 . . . . . . . . 9 (𝑒 = 𝑓 → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2827adantl 482 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2925, 28eqeq12d 2810 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))))
3018, 29imbi12d 346 . . . . . 6 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ (𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)))))
31 vex 3440 . . . . . . . . 9 𝑘 ∈ V
32 vex 3440 . . . . . . . . 9 𝑒 ∈ V
3331, 32opvtxfvi 26477 . . . . . . . 8 (Vtx‘⟨𝑘, 𝑒⟩) = 𝑘
3433eqcomi 2804 . . . . . . 7 𝑘 = (Vtx‘⟨𝑘, 𝑒⟩)
35 eqid 2795 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) = (iEdg‘⟨𝑘, 𝑒⟩)
36 eqid 2795 . . . . . . 7 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
37 eqid 2795 . . . . . . 7 ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩
3834, 35, 36, 37upgrres 26771 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ ∈ UPGraph)
39 eleq1 2870 . . . . . . . 8 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
4039adantl 482 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
41 simpl 483 . . . . . . . . 9 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → 𝑤 = (𝑘 ∖ {𝑛}))
42 opeq12 4712 . . . . . . . . . . . 12 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ⟨𝑤, 𝑓⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)
4342fveq2d 6542 . . . . . . . . . . 11 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (VtxDeg‘⟨𝑤, 𝑓⟩) = (VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩))
4443fveq1d 6540 . . . . . . . . . 10 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4544adantr 481 . . . . . . . . 9 (((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) ∧ 𝑣𝑤) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4641, 45sumeq12dv 14896 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
47 fveq2 6538 . . . . . . . . . 10 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (♯‘𝑓) = (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))
4847oveq2d 7032 . . . . . . . . 9 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
4948adantl 482 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
5046, 49eqeq12d 2810 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)) ↔ Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))))
5140, 50imbi12d 346 . . . . . 6 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))) ↔ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))))
52 hasheq0 13574 . . . . . . . . 9 (𝑘 ∈ V → ((♯‘𝑘) = 0 ↔ 𝑘 = ∅))
5352elv 3442 . . . . . . . 8 ((♯‘𝑘) = 0 ↔ 𝑘 = ∅)
54 2t0e0 11654 . . . . . . . . . 10 (2 · 0) = 0
5554a1i 11 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · 0) = 0)
5631, 32opiedgfvi 26478 . . . . . . . . . . . . 13 (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒
5756eqcomi 2804 . . . . . . . . . . . 12 𝑒 = (iEdg‘⟨𝑘, 𝑒⟩)
58 upgruhgr 26570 . . . . . . . . . . . . . 14 (⟨𝑘, 𝑒⟩ ∈ UPGraph → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
5958adantr 481 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
6034eqeq1i 2800 . . . . . . . . . . . . . 14 (𝑘 = ∅ ↔ (Vtx‘⟨𝑘, 𝑒⟩) = ∅)
61 uhgr0vb 26540 . . . . . . . . . . . . . 14 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (Vtx‘⟨𝑘, 𝑒⟩) = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6260, 61sylan2b 593 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6359, 62mpbid 233 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (iEdg‘⟨𝑘, 𝑒⟩) = ∅)
6457, 63syl5eq 2843 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → 𝑒 = ∅)
65 hasheq0 13574 . . . . . . . . . . . 12 (𝑒 ∈ V → ((♯‘𝑒) = 0 ↔ 𝑒 = ∅))
6665elv 3442 . . . . . . . . . . 11 ((♯‘𝑒) = 0 ↔ 𝑒 = ∅)
6764, 66sylibr 235 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (♯‘𝑒) = 0)
6867oveq2d 7032 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · (♯‘𝑒)) = (2 · 0))
69 sumeq1 14879 . . . . . . . . . . 11 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣))
70 sum0 14911 . . . . . . . . . . 11 Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣) = 0
7169, 70syl6eq 2847 . . . . . . . . . 10 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7271adantl 482 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7355, 68, 723eqtr4rd 2842 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7453, 73sylan2b 593 . . . . . . 7 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7574a1d 25 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
76 eleq1 2870 . . . . . . . . . . 11 ((𝑦 + 1) = (♯‘𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
7776eqcoms 2803 . . . . . . . . . 10 ((♯‘𝑘) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
78773ad2ant2 1127 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
79 hashclb 13569 . . . . . . . . . . . 12 (𝑘 ∈ V → (𝑘 ∈ Fin ↔ (♯‘𝑘) ∈ ℕ0))
8079biimprd 249 . . . . . . . . . . 11 (𝑘 ∈ V → ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin))
8180elv 3442 . . . . . . . . . 10 ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin)
82 eqid 2795 . . . . . . . . . . . . . . 15 (𝑘 ∖ {𝑛}) = (𝑘 ∖ {𝑛})
83 eqid 2795 . . . . . . . . . . . . . . 15 {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
8456dmeqi 5659 . . . . . . . . . . . . . . . . . 18 dom (iEdg‘⟨𝑘, 𝑒⟩) = dom 𝑒
8584rabeqi 3427 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
86 eqidd 2796 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒𝑛 = 𝑛)
8756a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ dom 𝑒 → (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒)
8887fveq1d 6540 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒 → ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) = (𝑒𝑖))
8986, 88neleq12d 3094 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝑒 → (𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) ↔ 𝑛 ∉ (𝑒𝑖)))
9089rabbiia 3418 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9185, 90eqtri 2819 . . . . . . . . . . . . . . . 16 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9256, 91reseq12i 5732 . . . . . . . . . . . . . . 15 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) = (𝑒 ↾ {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)})
9334, 57, 82, 83, 92, 37finsumvtxdg2sstep 27014 . . . . . . . . . . . . . 14 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒))))
94 df-ov 7019 . . . . . . . . . . . . . . . . . 18 (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑘, 𝑒⟩)
9594fveq1i 6539 . . . . . . . . . . . . . . . . 17 ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9695a1i 11 . . . . . . . . . . . . . . . 16 (𝑣𝑘 → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣))
9796sumeq2i 14889 . . . . . . . . . . . . . . 15 Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9897eqeq1i 2800 . . . . . . . . . . . . . 14 𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒)))
9993, 98syl6ibr 253 . . . . . . . . . . . . 13 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
10099exp32 421 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → (𝑒 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
101100com34 91 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
1021013adant2 1124 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10381, 102syl5 34 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((♯‘𝑘) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10478, 103sylbid 241 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
105104impcom 408 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))))
106105imp 407 . . . . . 6 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) ∧ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
1072, 4, 16, 30, 38, 51, 75, 106opfi1ind 13706 . . . . 5 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
108107ex 413 . . . 4 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
1091, 108syl 17 . . 3 (𝐺 ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
110 sumvtxdg2size.v . . . . 5 𝑉 = (Vtx‘𝐺)
111110eleq1i 2873 . . . 4 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
112111a1i 11 . . 3 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin))
113 sumvtxdg2size.i . . . . . 6 𝐼 = (iEdg‘𝐺)
114113eleq1i 2873 . . . . 5 (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)
115114a1i 11 . . . 4 (𝐺 ∈ UPGraph → (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
116110a1i 11 . . . . . 6 (𝐺 ∈ UPGraph → 𝑉 = (Vtx‘𝐺))
117 sumvtxdg2size.d . . . . . . . . 9 𝐷 = (VtxDeg‘𝐺)
118 vtxdgop 26935 . . . . . . . . 9 (𝐺 ∈ UPGraph → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
119117, 118syl5eq 2843 . . . . . . . 8 (𝐺 ∈ UPGraph → 𝐷 = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
120119fveq1d 6540 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
121120adantr 481 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑣𝑉) → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
122116, 121sumeq12dv 14896 . . . . 5 (𝐺 ∈ UPGraph → Σ𝑣𝑉 (𝐷𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
123113fveq2i 6541 . . . . . . 7 (♯‘𝐼) = (♯‘(iEdg‘𝐺))
124123oveq2i 7027 . . . . . 6 (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺)))
125124a1i 11 . . . . 5 (𝐺 ∈ UPGraph → (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺))))
126122, 125eqeq12d 2810 . . . 4 (𝐺 ∈ UPGraph → (Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
127115, 126imbi12d 346 . . 3 (𝐺 ∈ UPGraph → ((𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
128109, 112, 1273imtr4d 295 . 2 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin → (𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))))
1291283imp 1104 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wnel 3090  {crab 3109  Vcvv 3437  cdif 3856  c0 4211  {csn 4472  cop 4478  dom cdm 5443  cres 5445  cfv 6225  (class class class)co 7016  Fincfn 8357  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388  2c2 11540  0cn0 11745  chash 13540  Σcsu 14876  Vtxcvtx 26464  iEdgciedg 26465  UHGraphcuhgr 26524  UPGraphcupgr 26548  VtxDegcvtxdg 26930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-xnn0 11816  df-z 11830  df-uz 12094  df-rp 12240  df-xadd 12358  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-vtx 26466  df-iedg 26467  df-edg 26516  df-uhgr 26526  df-upgr 26550  df-vtxdg 26931
This theorem is referenced by:  fusgr1th  27016  finsumvtxdgeven  27017
  Copyright terms: Public domain W3C validator