MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2size Structured version   Visualization version   GIF version

Theorem finsumvtxdg2size 27335
Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is twice the size of the pseudograph. See equation (1) in section I.1 in [Bollobas] p. 4. Here, the "proof" is simply the statement "Since each edge has two endvertices, the sum of the degrees is exactly twice the number of edges". The formal proof of this theorem (for pseudographs) is much more complicated, taking also the used auxiliary theorems into account. The proof for a (finite) simple graph (see fusgr1th 27336) would be shorter, but nevertheless still laborious. Although this theorem would hold also for infinite pseudographs and pseudographs of infinite size, the proof of this most general version (see theorem "sumvtxdg2size" below) would require many more auxiliary theorems (e.g., the extension of the sum Σ over an arbitrary set).

I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021.)

Hypotheses
Ref Expression
sumvtxdg2size.v 𝑉 = (Vtx‘𝐺)
sumvtxdg2size.i 𝐼 = (iEdg‘𝐺)
sumvtxdg2size.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
finsumvtxdg2size ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉
Allowed substitution hints:   𝐷(𝑣)   𝐼(𝑣)

Proof of Theorem finsumvtxdg2size
Dummy variables 𝑒 𝑘 𝑛 𝑓 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgrop 26882 . . . 4 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
2 fvex 6686 . . . . . 6 (iEdg‘𝐺) ∈ V
3 fvex 6686 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) ∈ V
43resex 5902 . . . . . 6 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ V
5 eleq1 2903 . . . . . . . 8 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
65adantl 484 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
7 simpl 485 . . . . . . . . 9 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → 𝑘 = (Vtx‘𝐺))
8 oveq12 7168 . . . . . . . . . . 11 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑘VtxDeg𝑒) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
98fveq1d 6675 . . . . . . . . . 10 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
109adantr 483 . . . . . . . . 9 (((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
117, 10sumeq12dv 15066 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
12 fveq2 6673 . . . . . . . . . 10 (𝑒 = (iEdg‘𝐺) → (♯‘𝑒) = (♯‘(iEdg‘𝐺)))
1312oveq2d 7175 . . . . . . . . 9 (𝑒 = (iEdg‘𝐺) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1413adantl 484 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1511, 14eqeq12d 2840 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
166, 15imbi12d 347 . . . . . 6 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
17 eleq1 2903 . . . . . . . 8 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1817adantl 484 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
19 simpl 485 . . . . . . . . 9 ((𝑘 = 𝑤𝑒 = 𝑓) → 𝑘 = 𝑤)
20 oveq12 7168 . . . . . . . . . . . 12 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (𝑤VtxDeg𝑓))
21 df-ov 7162 . . . . . . . . . . . 12 (𝑤VtxDeg𝑓) = (VtxDeg‘⟨𝑤, 𝑓⟩)
2220, 21syl6eq 2875 . . . . . . . . . . 11 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑤, 𝑓⟩))
2322fveq1d 6675 . . . . . . . . . 10 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2423adantr 483 . . . . . . . . 9 (((𝑘 = 𝑤𝑒 = 𝑓) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2519, 24sumeq12dv 15066 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
26 fveq2 6673 . . . . . . . . . 10 (𝑒 = 𝑓 → (♯‘𝑒) = (♯‘𝑓))
2726oveq2d 7175 . . . . . . . . 9 (𝑒 = 𝑓 → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2827adantl 484 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2925, 28eqeq12d 2840 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))))
3018, 29imbi12d 347 . . . . . 6 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ (𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)))))
31 vex 3500 . . . . . . . . 9 𝑘 ∈ V
32 vex 3500 . . . . . . . . 9 𝑒 ∈ V
3331, 32opvtxfvi 26797 . . . . . . . 8 (Vtx‘⟨𝑘, 𝑒⟩) = 𝑘
3433eqcomi 2833 . . . . . . 7 𝑘 = (Vtx‘⟨𝑘, 𝑒⟩)
35 eqid 2824 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) = (iEdg‘⟨𝑘, 𝑒⟩)
36 eqid 2824 . . . . . . 7 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
37 eqid 2824 . . . . . . 7 ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩
3834, 35, 36, 37upgrres 27091 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ ∈ UPGraph)
39 eleq1 2903 . . . . . . . 8 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
4039adantl 484 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
41 simpl 485 . . . . . . . . 9 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → 𝑤 = (𝑘 ∖ {𝑛}))
42 opeq12 4808 . . . . . . . . . . . 12 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ⟨𝑤, 𝑓⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)
4342fveq2d 6677 . . . . . . . . . . 11 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (VtxDeg‘⟨𝑤, 𝑓⟩) = (VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩))
4443fveq1d 6675 . . . . . . . . . 10 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4544adantr 483 . . . . . . . . 9 (((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) ∧ 𝑣𝑤) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4641, 45sumeq12dv 15066 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
47 fveq2 6673 . . . . . . . . . 10 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (♯‘𝑓) = (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))
4847oveq2d 7175 . . . . . . . . 9 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
4948adantl 484 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
5046, 49eqeq12d 2840 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)) ↔ Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))))
5140, 50imbi12d 347 . . . . . 6 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))) ↔ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))))
52 hasheq0 13727 . . . . . . . . 9 (𝑘 ∈ V → ((♯‘𝑘) = 0 ↔ 𝑘 = ∅))
5352elv 3502 . . . . . . . 8 ((♯‘𝑘) = 0 ↔ 𝑘 = ∅)
54 2t0e0 11809 . . . . . . . . . 10 (2 · 0) = 0
5554a1i 11 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · 0) = 0)
5631, 32opiedgfvi 26798 . . . . . . . . . . . . 13 (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒
5756eqcomi 2833 . . . . . . . . . . . 12 𝑒 = (iEdg‘⟨𝑘, 𝑒⟩)
58 upgruhgr 26890 . . . . . . . . . . . . . 14 (⟨𝑘, 𝑒⟩ ∈ UPGraph → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
5958adantr 483 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
6034eqeq1i 2829 . . . . . . . . . . . . . 14 (𝑘 = ∅ ↔ (Vtx‘⟨𝑘, 𝑒⟩) = ∅)
61 uhgr0vb 26860 . . . . . . . . . . . . . 14 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (Vtx‘⟨𝑘, 𝑒⟩) = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6260, 61sylan2b 595 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6359, 62mpbid 234 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (iEdg‘⟨𝑘, 𝑒⟩) = ∅)
6457, 63syl5eq 2871 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → 𝑒 = ∅)
65 hasheq0 13727 . . . . . . . . . . . 12 (𝑒 ∈ V → ((♯‘𝑒) = 0 ↔ 𝑒 = ∅))
6665elv 3502 . . . . . . . . . . 11 ((♯‘𝑒) = 0 ↔ 𝑒 = ∅)
6764, 66sylibr 236 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (♯‘𝑒) = 0)
6867oveq2d 7175 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · (♯‘𝑒)) = (2 · 0))
69 sumeq1 15048 . . . . . . . . . . 11 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣))
70 sum0 15081 . . . . . . . . . . 11 Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣) = 0
7169, 70syl6eq 2875 . . . . . . . . . 10 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7271adantl 484 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7355, 68, 723eqtr4rd 2870 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7453, 73sylan2b 595 . . . . . . 7 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7574a1d 25 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
76 eleq1 2903 . . . . . . . . . . 11 ((𝑦 + 1) = (♯‘𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
7776eqcoms 2832 . . . . . . . . . 10 ((♯‘𝑘) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
78773ad2ant2 1130 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
79 hashclb 13722 . . . . . . . . . . . 12 (𝑘 ∈ V → (𝑘 ∈ Fin ↔ (♯‘𝑘) ∈ ℕ0))
8079biimprd 250 . . . . . . . . . . 11 (𝑘 ∈ V → ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin))
8180elv 3502 . . . . . . . . . 10 ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin)
82 eqid 2824 . . . . . . . . . . . . . . 15 (𝑘 ∖ {𝑛}) = (𝑘 ∖ {𝑛})
83 eqid 2824 . . . . . . . . . . . . . . 15 {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
8456dmeqi 5776 . . . . . . . . . . . . . . . . . 18 dom (iEdg‘⟨𝑘, 𝑒⟩) = dom 𝑒
8584rabeqi 3485 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
86 eqidd 2825 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒𝑛 = 𝑛)
8756a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ dom 𝑒 → (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒)
8887fveq1d 6675 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒 → ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) = (𝑒𝑖))
8986, 88neleq12d 3130 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝑒 → (𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) ↔ 𝑛 ∉ (𝑒𝑖)))
9089rabbiia 3475 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9185, 90eqtri 2847 . . . . . . . . . . . . . . . 16 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9256, 91reseq12i 5854 . . . . . . . . . . . . . . 15 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) = (𝑒 ↾ {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)})
9334, 57, 82, 83, 92, 37finsumvtxdg2sstep 27334 . . . . . . . . . . . . . 14 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒))))
94 df-ov 7162 . . . . . . . . . . . . . . . . . 18 (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑘, 𝑒⟩)
9594fveq1i 6674 . . . . . . . . . . . . . . . . 17 ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9695a1i 11 . . . . . . . . . . . . . . . 16 (𝑣𝑘 → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣))
9796sumeq2i 15059 . . . . . . . . . . . . . . 15 Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9897eqeq1i 2829 . . . . . . . . . . . . . 14 𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒)))
9993, 98syl6ibr 254 . . . . . . . . . . . . 13 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
10099exp32 423 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → (𝑒 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
101100com34 91 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
1021013adant2 1127 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10381, 102syl5 34 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((♯‘𝑘) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10478, 103sylbid 242 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
105104impcom 410 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))))
106105imp 409 . . . . . 6 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) ∧ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
1072, 4, 16, 30, 38, 51, 75, 106opfi1ind 13863 . . . . 5 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
108107ex 415 . . . 4 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
1091, 108syl 17 . . 3 (𝐺 ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
110 sumvtxdg2size.v . . . . 5 𝑉 = (Vtx‘𝐺)
111110eleq1i 2906 . . . 4 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
112111a1i 11 . . 3 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin))
113 sumvtxdg2size.i . . . . . 6 𝐼 = (iEdg‘𝐺)
114113eleq1i 2906 . . . . 5 (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)
115114a1i 11 . . . 4 (𝐺 ∈ UPGraph → (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
116110a1i 11 . . . . . 6 (𝐺 ∈ UPGraph → 𝑉 = (Vtx‘𝐺))
117 sumvtxdg2size.d . . . . . . . . 9 𝐷 = (VtxDeg‘𝐺)
118 vtxdgop 27255 . . . . . . . . 9 (𝐺 ∈ UPGraph → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
119117, 118syl5eq 2871 . . . . . . . 8 (𝐺 ∈ UPGraph → 𝐷 = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
120119fveq1d 6675 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
121120adantr 483 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑣𝑉) → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
122116, 121sumeq12dv 15066 . . . . 5 (𝐺 ∈ UPGraph → Σ𝑣𝑉 (𝐷𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
123113fveq2i 6676 . . . . . . 7 (♯‘𝐼) = (♯‘(iEdg‘𝐺))
124123oveq2i 7170 . . . . . 6 (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺)))
125124a1i 11 . . . . 5 (𝐺 ∈ UPGraph → (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺))))
126122, 125eqeq12d 2840 . . . 4 (𝐺 ∈ UPGraph → (Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
127115, 126imbi12d 347 . . 3 (𝐺 ∈ UPGraph → ((𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
128109, 112, 1273imtr4d 296 . 2 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin → (𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))))
1291283imp 1107 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wnel 3126  {crab 3145  Vcvv 3497  cdif 3936  c0 4294  {csn 4570  cop 4576  dom cdm 5558  cres 5560  cfv 6358  (class class class)co 7159  Fincfn 8512  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  2c2 11695  0cn0 11900  chash 13693  Σcsu 15045  Vtxcvtx 26784  iEdgciedg 26785  UHGraphcuhgr 26844  UPGraphcupgr 26868  VtxDegcvtxdg 27250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-vtx 26786  df-iedg 26787  df-edg 26836  df-uhgr 26846  df-upgr 26870  df-vtxdg 27251
This theorem is referenced by:  fusgr1th  27336  finsumvtxdgeven  27337
  Copyright terms: Public domain W3C validator