MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2size Structured version   Visualization version   GIF version

Theorem finsumvtxdg2size 28206
Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is twice the size of the pseudograph. See equation (1) in section I.1 in [Bollobas] p. 4. Here, the "proof" is simply the statement "Since each edge has two endvertices, the sum of the degrees is exactly twice the number of edges". The formal proof of this theorem (for pseudographs) is much more complicated, taking also the used auxiliary theorems into account. The proof for a (finite) simple graph (see fusgr1th 28207) would be shorter, but nevertheless still laborious. Although this theorem would hold also for infinite pseudographs and pseudographs of infinite size, the proof of this most general version (see theorem "sumvtxdg2size" below) would require many more auxiliary theorems (e.g., the extension of the sum Σ over an arbitrary set).

I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021.)

Hypotheses
Ref Expression
sumvtxdg2size.v 𝑉 = (Vtx‘𝐺)
sumvtxdg2size.i 𝐼 = (iEdg‘𝐺)
sumvtxdg2size.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
finsumvtxdg2size ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉
Allowed substitution hints:   𝐷(𝑣)   𝐼(𝑣)

Proof of Theorem finsumvtxdg2size
Dummy variables 𝑒 𝑘 𝑛 𝑓 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgrop 27753 . . . 4 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
2 fvex 6838 . . . . . 6 (iEdg‘𝐺) ∈ V
3 fvex 6838 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) ∈ V
43resex 5971 . . . . . 6 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ V
5 eleq1 2824 . . . . . . . 8 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
65adantl 482 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
7 simpl 483 . . . . . . . . 9 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → 𝑘 = (Vtx‘𝐺))
8 oveq12 7346 . . . . . . . . . . 11 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑘VtxDeg𝑒) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
98fveq1d 6827 . . . . . . . . . 10 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
109adantr 481 . . . . . . . . 9 (((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
117, 10sumeq12dv 15517 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
12 fveq2 6825 . . . . . . . . . 10 (𝑒 = (iEdg‘𝐺) → (♯‘𝑒) = (♯‘(iEdg‘𝐺)))
1312oveq2d 7353 . . . . . . . . 9 (𝑒 = (iEdg‘𝐺) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1413adantl 482 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1511, 14eqeq12d 2752 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
166, 15imbi12d 344 . . . . . 6 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
17 eleq1 2824 . . . . . . . 8 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1817adantl 482 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
19 simpl 483 . . . . . . . . 9 ((𝑘 = 𝑤𝑒 = 𝑓) → 𝑘 = 𝑤)
20 oveq12 7346 . . . . . . . . . . . 12 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (𝑤VtxDeg𝑓))
21 df-ov 7340 . . . . . . . . . . . 12 (𝑤VtxDeg𝑓) = (VtxDeg‘⟨𝑤, 𝑓⟩)
2220, 21eqtrdi 2792 . . . . . . . . . . 11 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑤, 𝑓⟩))
2322fveq1d 6827 . . . . . . . . . 10 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2423adantr 481 . . . . . . . . 9 (((𝑘 = 𝑤𝑒 = 𝑓) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2519, 24sumeq12dv 15517 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
26 fveq2 6825 . . . . . . . . . 10 (𝑒 = 𝑓 → (♯‘𝑒) = (♯‘𝑓))
2726oveq2d 7353 . . . . . . . . 9 (𝑒 = 𝑓 → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2827adantl 482 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2925, 28eqeq12d 2752 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))))
3018, 29imbi12d 344 . . . . . 6 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ (𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)))))
31 vex 3445 . . . . . . . . 9 𝑘 ∈ V
32 vex 3445 . . . . . . . . 9 𝑒 ∈ V
3331, 32opvtxfvi 27668 . . . . . . . 8 (Vtx‘⟨𝑘, 𝑒⟩) = 𝑘
3433eqcomi 2745 . . . . . . 7 𝑘 = (Vtx‘⟨𝑘, 𝑒⟩)
35 eqid 2736 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) = (iEdg‘⟨𝑘, 𝑒⟩)
36 eqid 2736 . . . . . . 7 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
37 eqid 2736 . . . . . . 7 ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩
3834, 35, 36, 37upgrres 27962 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ ∈ UPGraph)
39 eleq1 2824 . . . . . . . 8 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
4039adantl 482 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
41 simpl 483 . . . . . . . . 9 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → 𝑤 = (𝑘 ∖ {𝑛}))
42 opeq12 4819 . . . . . . . . . . . 12 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ⟨𝑤, 𝑓⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)
4342fveq2d 6829 . . . . . . . . . . 11 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (VtxDeg‘⟨𝑤, 𝑓⟩) = (VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩))
4443fveq1d 6827 . . . . . . . . . 10 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4544adantr 481 . . . . . . . . 9 (((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) ∧ 𝑣𝑤) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4641, 45sumeq12dv 15517 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
47 fveq2 6825 . . . . . . . . . 10 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (♯‘𝑓) = (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))
4847oveq2d 7353 . . . . . . . . 9 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
4948adantl 482 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
5046, 49eqeq12d 2752 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)) ↔ Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))))
5140, 50imbi12d 344 . . . . . 6 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))) ↔ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))))
52 hasheq0 14178 . . . . . . . . 9 (𝑘 ∈ V → ((♯‘𝑘) = 0 ↔ 𝑘 = ∅))
5352elv 3447 . . . . . . . 8 ((♯‘𝑘) = 0 ↔ 𝑘 = ∅)
54 2t0e0 12243 . . . . . . . . . 10 (2 · 0) = 0
5554a1i 11 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · 0) = 0)
5631, 32opiedgfvi 27669 . . . . . . . . . . . . 13 (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒
5756eqcomi 2745 . . . . . . . . . . . 12 𝑒 = (iEdg‘⟨𝑘, 𝑒⟩)
58 upgruhgr 27761 . . . . . . . . . . . . . 14 (⟨𝑘, 𝑒⟩ ∈ UPGraph → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
5958adantr 481 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
6034eqeq1i 2741 . . . . . . . . . . . . . 14 (𝑘 = ∅ ↔ (Vtx‘⟨𝑘, 𝑒⟩) = ∅)
61 uhgr0vb 27731 . . . . . . . . . . . . . 14 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (Vtx‘⟨𝑘, 𝑒⟩) = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6260, 61sylan2b 594 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6359, 62mpbid 231 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (iEdg‘⟨𝑘, 𝑒⟩) = ∅)
6457, 63eqtrid 2788 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → 𝑒 = ∅)
65 hasheq0 14178 . . . . . . . . . . . 12 (𝑒 ∈ V → ((♯‘𝑒) = 0 ↔ 𝑒 = ∅))
6665elv 3447 . . . . . . . . . . 11 ((♯‘𝑒) = 0 ↔ 𝑒 = ∅)
6764, 66sylibr 233 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (♯‘𝑒) = 0)
6867oveq2d 7353 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · (♯‘𝑒)) = (2 · 0))
69 sumeq1 15499 . . . . . . . . . . 11 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣))
70 sum0 15532 . . . . . . . . . . 11 Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣) = 0
7169, 70eqtrdi 2792 . . . . . . . . . 10 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7271adantl 482 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7355, 68, 723eqtr4rd 2787 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7453, 73sylan2b 594 . . . . . . 7 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7574a1d 25 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
76 eleq1 2824 . . . . . . . . . . 11 ((𝑦 + 1) = (♯‘𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
7776eqcoms 2744 . . . . . . . . . 10 ((♯‘𝑘) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
78773ad2ant2 1133 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
79 hashclb 14173 . . . . . . . . . . . 12 (𝑘 ∈ V → (𝑘 ∈ Fin ↔ (♯‘𝑘) ∈ ℕ0))
8079biimprd 247 . . . . . . . . . . 11 (𝑘 ∈ V → ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin))
8180elv 3447 . . . . . . . . . 10 ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin)
82 eqid 2736 . . . . . . . . . . . . . . 15 (𝑘 ∖ {𝑛}) = (𝑘 ∖ {𝑛})
83 eqid 2736 . . . . . . . . . . . . . . 15 {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
8456dmeqi 5846 . . . . . . . . . . . . . . . . . 18 dom (iEdg‘⟨𝑘, 𝑒⟩) = dom 𝑒
8584rabeqi 3416 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
86 eqidd 2737 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒𝑛 = 𝑛)
8756a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ dom 𝑒 → (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒)
8887fveq1d 6827 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒 → ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) = (𝑒𝑖))
8986, 88neleq12d 3050 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝑒 → (𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) ↔ 𝑛 ∉ (𝑒𝑖)))
9089rabbiia 3407 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9185, 90eqtri 2764 . . . . . . . . . . . . . . . 16 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9256, 91reseq12i 5921 . . . . . . . . . . . . . . 15 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) = (𝑒 ↾ {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)})
9334, 57, 82, 83, 92, 37finsumvtxdg2sstep 28205 . . . . . . . . . . . . . 14 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒))))
94 df-ov 7340 . . . . . . . . . . . . . . . . . 18 (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑘, 𝑒⟩)
9594fveq1i 6826 . . . . . . . . . . . . . . . . 17 ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9695a1i 11 . . . . . . . . . . . . . . . 16 (𝑣𝑘 → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣))
9796sumeq2i 15510 . . . . . . . . . . . . . . 15 Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9897eqeq1i 2741 . . . . . . . . . . . . . 14 𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒)))
9993, 98syl6ibr 251 . . . . . . . . . . . . 13 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
10099exp32 421 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → (𝑒 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
101100com34 91 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
1021013adant2 1130 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10381, 102syl5 34 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((♯‘𝑘) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10478, 103sylbid 239 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
105104impcom 408 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))))
106105imp 407 . . . . . 6 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) ∧ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
1072, 4, 16, 30, 38, 51, 75, 106opfi1ind 14316 . . . . 5 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
108107ex 413 . . . 4 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
1091, 108syl 17 . . 3 (𝐺 ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
110 sumvtxdg2size.v . . . . 5 𝑉 = (Vtx‘𝐺)
111110eleq1i 2827 . . . 4 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
112111a1i 11 . . 3 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin))
113 sumvtxdg2size.i . . . . . 6 𝐼 = (iEdg‘𝐺)
114113eleq1i 2827 . . . . 5 (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)
115114a1i 11 . . . 4 (𝐺 ∈ UPGraph → (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
116110a1i 11 . . . . . 6 (𝐺 ∈ UPGraph → 𝑉 = (Vtx‘𝐺))
117 sumvtxdg2size.d . . . . . . . . 9 𝐷 = (VtxDeg‘𝐺)
118 vtxdgop 28126 . . . . . . . . 9 (𝐺 ∈ UPGraph → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
119117, 118eqtrid 2788 . . . . . . . 8 (𝐺 ∈ UPGraph → 𝐷 = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
120119fveq1d 6827 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
121120adantr 481 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑣𝑉) → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
122116, 121sumeq12dv 15517 . . . . 5 (𝐺 ∈ UPGraph → Σ𝑣𝑉 (𝐷𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
123113fveq2i 6828 . . . . . . 7 (♯‘𝐼) = (♯‘(iEdg‘𝐺))
124123oveq2i 7348 . . . . . 6 (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺)))
125124a1i 11 . . . . 5 (𝐺 ∈ UPGraph → (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺))))
126122, 125eqeq12d 2752 . . . 4 (𝐺 ∈ UPGraph → (Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
127115, 126imbi12d 344 . . 3 (𝐺 ∈ UPGraph → ((𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
128109, 112, 1273imtr4d 293 . 2 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin → (𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))))
1291283imp 1110 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wnel 3046  {crab 3403  Vcvv 3441  cdif 3895  c0 4269  {csn 4573  cop 4579  dom cdm 5620  cres 5622  cfv 6479  (class class class)co 7337  Fincfn 8804  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977  2c2 12129  0cn0 12334  chash 14145  Σcsu 15496  Vtxcvtx 27655  iEdgciedg 27656  UHGraphcuhgr 27715  UPGraphcupgr 27739  VtxDegcvtxdg 28121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-disj 5058  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-oadd 8371  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-oi 9367  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-rp 12832  df-xadd 12950  df-fz 13341  df-fzo 13484  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-sum 15497  df-vtx 27657  df-iedg 27658  df-edg 27707  df-uhgr 27717  df-upgr 27741  df-vtxdg 28122
This theorem is referenced by:  fusgr1th  28207  finsumvtxdgeven  28208
  Copyright terms: Public domain W3C validator