MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2size Structured version   Visualization version   GIF version

Theorem finsumvtxdg2size 29485
Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is twice the size of the pseudograph. See equation (1) in section I.1 in [Bollobas] p. 4. Here, the "proof" is simply the statement "Since each edge has two endvertices, the sum of the degrees is exactly twice the number of edges". The formal proof of this theorem (for pseudographs) is much more complicated, taking also the used auxiliary theorems into account. The proof for a (finite) simple graph (see fusgr1th 29486) would be shorter, but nevertheless still laborious. Although this theorem would hold also for infinite pseudographs and pseudographs of infinite size, the proof of this most general version (see theorem "sumvtxdg2size" below) would require many more auxiliary theorems (e.g., the extension of the sum Σ over an arbitrary set).

I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021.)

Hypotheses
Ref Expression
sumvtxdg2size.v 𝑉 = (Vtx‘𝐺)
sumvtxdg2size.i 𝐼 = (iEdg‘𝐺)
sumvtxdg2size.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
finsumvtxdg2size ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉
Allowed substitution hints:   𝐷(𝑣)   𝐼(𝑣)

Proof of Theorem finsumvtxdg2size
Dummy variables 𝑒 𝑘 𝑛 𝑓 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgrop 29028 . . . 4 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
2 fvex 6874 . . . . . 6 (iEdg‘𝐺) ∈ V
3 fvex 6874 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) ∈ V
43resex 6003 . . . . . 6 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ V
5 eleq1 2817 . . . . . . . 8 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
65adantl 481 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
7 simpl 482 . . . . . . . . 9 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → 𝑘 = (Vtx‘𝐺))
8 oveq12 7399 . . . . . . . . . . 11 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑘VtxDeg𝑒) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
98fveq1d 6863 . . . . . . . . . 10 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
109adantr 480 . . . . . . . . 9 (((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
117, 10sumeq12dv 15679 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
12 fveq2 6861 . . . . . . . . . 10 (𝑒 = (iEdg‘𝐺) → (♯‘𝑒) = (♯‘(iEdg‘𝐺)))
1312oveq2d 7406 . . . . . . . . 9 (𝑒 = (iEdg‘𝐺) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1413adantl 481 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1511, 14eqeq12d 2746 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
166, 15imbi12d 344 . . . . . 6 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
17 eleq1 2817 . . . . . . . 8 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1817adantl 481 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
19 simpl 482 . . . . . . . . 9 ((𝑘 = 𝑤𝑒 = 𝑓) → 𝑘 = 𝑤)
20 oveq12 7399 . . . . . . . . . . . 12 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (𝑤VtxDeg𝑓))
21 df-ov 7393 . . . . . . . . . . . 12 (𝑤VtxDeg𝑓) = (VtxDeg‘⟨𝑤, 𝑓⟩)
2220, 21eqtrdi 2781 . . . . . . . . . . 11 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑤, 𝑓⟩))
2322fveq1d 6863 . . . . . . . . . 10 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2423adantr 480 . . . . . . . . 9 (((𝑘 = 𝑤𝑒 = 𝑓) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2519, 24sumeq12dv 15679 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
26 fveq2 6861 . . . . . . . . . 10 (𝑒 = 𝑓 → (♯‘𝑒) = (♯‘𝑓))
2726oveq2d 7406 . . . . . . . . 9 (𝑒 = 𝑓 → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2827adantl 481 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2925, 28eqeq12d 2746 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))))
3018, 29imbi12d 344 . . . . . 6 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ (𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)))))
31 vex 3454 . . . . . . . . 9 𝑘 ∈ V
32 vex 3454 . . . . . . . . 9 𝑒 ∈ V
3331, 32opvtxfvi 28943 . . . . . . . 8 (Vtx‘⟨𝑘, 𝑒⟩) = 𝑘
3433eqcomi 2739 . . . . . . 7 𝑘 = (Vtx‘⟨𝑘, 𝑒⟩)
35 eqid 2730 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) = (iEdg‘⟨𝑘, 𝑒⟩)
36 eqid 2730 . . . . . . 7 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
37 eqid 2730 . . . . . . 7 ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩
3834, 35, 36, 37upgrres 29240 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ ∈ UPGraph)
39 eleq1 2817 . . . . . . . 8 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
4039adantl 481 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
41 simpl 482 . . . . . . . . 9 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → 𝑤 = (𝑘 ∖ {𝑛}))
42 opeq12 4842 . . . . . . . . . . . 12 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ⟨𝑤, 𝑓⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)
4342fveq2d 6865 . . . . . . . . . . 11 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (VtxDeg‘⟨𝑤, 𝑓⟩) = (VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩))
4443fveq1d 6863 . . . . . . . . . 10 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4544adantr 480 . . . . . . . . 9 (((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) ∧ 𝑣𝑤) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4641, 45sumeq12dv 15679 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
47 fveq2 6861 . . . . . . . . . 10 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (♯‘𝑓) = (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))
4847oveq2d 7406 . . . . . . . . 9 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
4948adantl 481 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
5046, 49eqeq12d 2746 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)) ↔ Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))))
5140, 50imbi12d 344 . . . . . 6 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))) ↔ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))))
52 hasheq0 14335 . . . . . . . . 9 (𝑘 ∈ V → ((♯‘𝑘) = 0 ↔ 𝑘 = ∅))
5352elv 3455 . . . . . . . 8 ((♯‘𝑘) = 0 ↔ 𝑘 = ∅)
54 2t0e0 12357 . . . . . . . . . 10 (2 · 0) = 0
5554a1i 11 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · 0) = 0)
5631, 32opiedgfvi 28944 . . . . . . . . . . . . 13 (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒
5756eqcomi 2739 . . . . . . . . . . . 12 𝑒 = (iEdg‘⟨𝑘, 𝑒⟩)
58 upgruhgr 29036 . . . . . . . . . . . . . 14 (⟨𝑘, 𝑒⟩ ∈ UPGraph → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
5958adantr 480 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
6034eqeq1i 2735 . . . . . . . . . . . . . 14 (𝑘 = ∅ ↔ (Vtx‘⟨𝑘, 𝑒⟩) = ∅)
61 uhgr0vb 29006 . . . . . . . . . . . . . 14 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (Vtx‘⟨𝑘, 𝑒⟩) = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6260, 61sylan2b 594 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6359, 62mpbid 232 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (iEdg‘⟨𝑘, 𝑒⟩) = ∅)
6457, 63eqtrid 2777 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → 𝑒 = ∅)
65 hasheq0 14335 . . . . . . . . . . . 12 (𝑒 ∈ V → ((♯‘𝑒) = 0 ↔ 𝑒 = ∅))
6665elv 3455 . . . . . . . . . . 11 ((♯‘𝑒) = 0 ↔ 𝑒 = ∅)
6764, 66sylibr 234 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (♯‘𝑒) = 0)
6867oveq2d 7406 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · (♯‘𝑒)) = (2 · 0))
69 sumeq1 15662 . . . . . . . . . . 11 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣))
70 sum0 15694 . . . . . . . . . . 11 Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣) = 0
7169, 70eqtrdi 2781 . . . . . . . . . 10 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7271adantl 481 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7355, 68, 723eqtr4rd 2776 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7453, 73sylan2b 594 . . . . . . 7 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7574a1d 25 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
76 eleq1 2817 . . . . . . . . . . 11 ((𝑦 + 1) = (♯‘𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
7776eqcoms 2738 . . . . . . . . . 10 ((♯‘𝑘) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
78773ad2ant2 1134 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
79 hashclb 14330 . . . . . . . . . . . 12 (𝑘 ∈ V → (𝑘 ∈ Fin ↔ (♯‘𝑘) ∈ ℕ0))
8079biimprd 248 . . . . . . . . . . 11 (𝑘 ∈ V → ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin))
8180elv 3455 . . . . . . . . . 10 ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin)
82 eqid 2730 . . . . . . . . . . . . . . 15 (𝑘 ∖ {𝑛}) = (𝑘 ∖ {𝑛})
83 eqid 2730 . . . . . . . . . . . . . . 15 {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
8456dmeqi 5871 . . . . . . . . . . . . . . . . . 18 dom (iEdg‘⟨𝑘, 𝑒⟩) = dom 𝑒
8584rabeqi 3422 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
86 eqidd 2731 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒𝑛 = 𝑛)
8756a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ dom 𝑒 → (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒)
8887fveq1d 6863 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒 → ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) = (𝑒𝑖))
8986, 88neleq12d 3035 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝑒 → (𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) ↔ 𝑛 ∉ (𝑒𝑖)))
9089rabbiia 3412 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9185, 90eqtri 2753 . . . . . . . . . . . . . . . 16 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9256, 91reseq12i 5951 . . . . . . . . . . . . . . 15 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) = (𝑒 ↾ {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)})
9334, 57, 82, 83, 92, 37finsumvtxdg2sstep 29484 . . . . . . . . . . . . . 14 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒))))
94 df-ov 7393 . . . . . . . . . . . . . . . . . 18 (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑘, 𝑒⟩)
9594fveq1i 6862 . . . . . . . . . . . . . . . . 17 ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9695a1i 11 . . . . . . . . . . . . . . . 16 (𝑣𝑘 → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣))
9796sumeq2i 15671 . . . . . . . . . . . . . . 15 Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9897eqeq1i 2735 . . . . . . . . . . . . . 14 𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒)))
9993, 98imbitrrdi 252 . . . . . . . . . . . . 13 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
10099exp32 420 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → (𝑒 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
101100com34 91 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
1021013adant2 1131 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10381, 102syl5 34 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((♯‘𝑘) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10478, 103sylbid 240 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
105104impcom 407 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))))
106105imp 406 . . . . . 6 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) ∧ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
1072, 4, 16, 30, 38, 51, 75, 106opfi1ind 14484 . . . . 5 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
108107ex 412 . . . 4 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
1091, 108syl 17 . . 3 (𝐺 ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
110 sumvtxdg2size.v . . . . 5 𝑉 = (Vtx‘𝐺)
111110eleq1i 2820 . . . 4 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
112111a1i 11 . . 3 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin))
113 sumvtxdg2size.i . . . . . 6 𝐼 = (iEdg‘𝐺)
114113eleq1i 2820 . . . . 5 (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)
115114a1i 11 . . . 4 (𝐺 ∈ UPGraph → (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
116110a1i 11 . . . . . 6 (𝐺 ∈ UPGraph → 𝑉 = (Vtx‘𝐺))
117 sumvtxdg2size.d . . . . . . . . 9 𝐷 = (VtxDeg‘𝐺)
118 vtxdgop 29405 . . . . . . . . 9 (𝐺 ∈ UPGraph → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
119117, 118eqtrid 2777 . . . . . . . 8 (𝐺 ∈ UPGraph → 𝐷 = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
120119fveq1d 6863 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
121120adantr 480 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑣𝑉) → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
122116, 121sumeq12dv 15679 . . . . 5 (𝐺 ∈ UPGraph → Σ𝑣𝑉 (𝐷𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
123113fveq2i 6864 . . . . . . 7 (♯‘𝐼) = (♯‘(iEdg‘𝐺))
124123oveq2i 7401 . . . . . 6 (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺)))
125124a1i 11 . . . . 5 (𝐺 ∈ UPGraph → (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺))))
126122, 125eqeq12d 2746 . . . 4 (𝐺 ∈ UPGraph → (Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
127115, 126imbi12d 344 . . 3 (𝐺 ∈ UPGraph → ((𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
128109, 112, 1273imtr4d 294 . 2 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin → (𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))))
1291283imp 1110 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3030  {crab 3408  Vcvv 3450  cdif 3914  c0 4299  {csn 4592  cop 4598  dom cdm 5641  cres 5643  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  2c2 12248  0cn0 12449  chash 14302  Σcsu 15659  Vtxcvtx 28930  iEdgciedg 28931  UHGraphcuhgr 28990  UPGraphcupgr 29014  VtxDegcvtxdg 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-vtx 28932  df-iedg 28933  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-vtxdg 29401
This theorem is referenced by:  fusgr1th  29486  finsumvtxdgeven  29487
  Copyright terms: Public domain W3C validator