MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrnself2 Structured version   Visualization version   GIF version

Theorem nbgrnself2 29395
Description: A class 𝑋 is not a neighbor of itself (whether it is a vertex or not). (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.)
Assertion
Ref Expression
nbgrnself2 𝑋 ∉ (𝐺 NeighbVtx 𝑋)

Proof of Theorem nbgrnself2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑣 = 𝑋𝑣 = 𝑋)
2 oveq2 7456 . . . 4 (𝑣 = 𝑋 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑋))
31, 2neleq12d 3057 . . 3 (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
4 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
54nbgrnself 29394 . . 3 𝑣 ∈ (Vtx‘𝐺)𝑣 ∉ (𝐺 NeighbVtx 𝑣)
63, 5vtoclri 3603 . 2 (𝑋 ∈ (Vtx‘𝐺) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋))
74nbgrisvtx 29376 . . . 4 (𝑋 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺))
87con3i 154 . . 3 𝑋 ∈ (Vtx‘𝐺) → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑋))
9 df-nel 3053 . . 3 (𝑋 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑋))
108, 9sylibr 234 . 2 𝑋 ∈ (Vtx‘𝐺) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋))
116, 10pm2.61i 182 1 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  wnel 3052  cfv 6573  (class class class)co 7448  Vtxcvtx 29031   NeighbVtx cnbgr 29367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-nbgr 29368
This theorem is referenced by:  nbgrssovtx  29396  nb3grprlem2  29416
  Copyright terms: Public domain W3C validator