![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrnself2 | Structured version Visualization version GIF version |
Description: A class 𝑋 is not a neighbor of itself (whether it is a vertex or not). (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrnself2 | ⊢ 𝑋 ∉ (𝐺 NeighbVtx 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑣 = 𝑋 → 𝑣 = 𝑋) | |
2 | oveq2 6932 | . . . 4 ⊢ (𝑣 = 𝑋 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑋)) | |
3 | 1, 2 | neleq12d 3079 | . . 3 ⊢ (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋))) |
4 | eqid 2778 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | nbgrnself 26710 | . . 3 ⊢ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
6 | 3, 5 | vtoclri 3485 | . 2 ⊢ (𝑋 ∈ (Vtx‘𝐺) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋)) |
7 | 4 | nbgrisvtx 26692 | . . . 4 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺)) |
8 | 7 | con3i 152 | . . 3 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑋)) |
9 | df-nel 3076 | . . 3 ⊢ (𝑋 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑋)) | |
10 | 8, 9 | sylibr 226 | . 2 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋)) |
11 | 6, 10 | pm2.61i 177 | 1 ⊢ 𝑋 ∉ (𝐺 NeighbVtx 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1601 ∈ wcel 2107 ∉ wnel 3075 ‘cfv 6137 (class class class)co 6924 Vtxcvtx 26348 NeighbVtx cnbgr 26683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-1st 7447 df-2nd 7448 df-nbgr 26684 |
This theorem is referenced by: nbgrssovtx 26712 nb3grprlem2 26733 |
Copyright terms: Public domain | W3C validator |