MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrnself2 Structured version   Visualization version   GIF version

Theorem nbgrnself2 29305
Description: A class 𝑋 is not a neighbor of itself (whether it is a vertex or not). (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.)
Assertion
Ref Expression
nbgrnself2 𝑋 ∉ (𝐺 NeighbVtx 𝑋)

Proof of Theorem nbgrnself2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑣 = 𝑋𝑣 = 𝑋)
2 oveq2 7357 . . . 4 (𝑣 = 𝑋 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑋))
31, 2neleq12d 3034 . . 3 (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋)))
4 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
54nbgrnself 29304 . . 3 𝑣 ∈ (Vtx‘𝐺)𝑣 ∉ (𝐺 NeighbVtx 𝑣)
63, 5vtoclri 3545 . 2 (𝑋 ∈ (Vtx‘𝐺) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋))
74nbgrisvtx 29286 . . . 4 (𝑋 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺))
87con3i 154 . . 3 𝑋 ∈ (Vtx‘𝐺) → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑋))
9 df-nel 3030 . . 3 (𝑋 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑋))
108, 9sylibr 234 . 2 𝑋 ∈ (Vtx‘𝐺) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋))
116, 10pm2.61i 182 1 𝑋 ∉ (𝐺 NeighbVtx 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wnel 3029  cfv 6482  (class class class)co 7349  Vtxcvtx 28941   NeighbVtx cnbgr 29277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-nbgr 29278
This theorem is referenced by:  nbgrssovtx  29306  nb3grprlem2  29326  isubgr3stgrlem1  47950  isubgr3stgrlem3  47952
  Copyright terms: Public domain W3C validator