| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgrnself2 | Structured version Visualization version GIF version | ||
| Description: A class 𝑋 is not a neighbor of itself (whether it is a vertex or not). (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| nbgrnself2 | ⊢ 𝑋 ∉ (𝐺 NeighbVtx 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑣 = 𝑋 → 𝑣 = 𝑋) | |
| 2 | oveq2 7418 | . . . 4 ⊢ (𝑣 = 𝑋 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑋)) | |
| 3 | 1, 2 | neleq12d 3042 | . . 3 ⊢ (𝑣 = 𝑋 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑋))) |
| 4 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | 4 | nbgrnself 29343 | . . 3 ⊢ ∀𝑣 ∈ (Vtx‘𝐺)𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
| 6 | 3, 5 | vtoclri 3574 | . 2 ⊢ (𝑋 ∈ (Vtx‘𝐺) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋)) |
| 7 | 4 | nbgrisvtx 29325 | . . . 4 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺)) |
| 8 | 7 | con3i 154 | . . 3 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑋)) |
| 9 | df-nel 3038 | . . 3 ⊢ (𝑋 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑋)) | |
| 10 | 8, 9 | sylibr 234 | . 2 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → 𝑋 ∉ (𝐺 NeighbVtx 𝑋)) |
| 11 | 6, 10 | pm2.61i 182 | 1 ⊢ 𝑋 ∉ (𝐺 NeighbVtx 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∉ wnel 3037 ‘cfv 6536 (class class class)co 7410 Vtxcvtx 28980 NeighbVtx cnbgr 29316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-nbgr 29317 |
| This theorem is referenced by: nbgrssovtx 29345 nb3grprlem2 29365 isubgr3stgrlem1 47945 isubgr3stgrlem3 47947 |
| Copyright terms: Public domain | W3C validator |