| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | neleq12d 3037 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∉ wnel 3032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-nel 3033 |
| This theorem is referenced by: noinfep 9550 isfbas 23742 upgrreslem 29280 umgrreslem 29281 nbgrnvtx0 29315 nbupgrres 29340 eupth2lem3lem6 30208 frgrncvvdeqlem1 30274 frgrwopreglem4a 30285 clnbgrnvtx0 47857 |
| Copyright terms: Public domain | W3C validator |