![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleq2 | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2736 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 1, 2 | neleq12d 3049 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∉ wnel 3044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 df-nel 3045 |
This theorem is referenced by: noinfep 9698 isfbas 23853 upgrreslem 29336 umgrreslem 29337 nbgrnvtx0 29371 nbupgrres 29396 eupth2lem3lem6 30262 frgrncvvdeqlem1 30328 frgrwopreglem4a 30339 clnbgrnvtx0 47752 |
Copyright terms: Public domain | W3C validator |