MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neleq2 Structured version   Visualization version   GIF version

Theorem neleq2 3039
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
neleq2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))

Proof of Theorem neleq2
StepHypRef Expression
1 eqidd 2732 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2neleq12d 3037 1 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wnel 3032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806  df-nel 3033
This theorem is referenced by:  noinfep  9550  isfbas  23742  upgrreslem  29280  umgrreslem  29281  nbgrnvtx0  29315  nbupgrres  29340  eupth2lem3lem6  30208  frgrncvvdeqlem1  30274  frgrwopreglem4a  30285  clnbgrnvtx0  47857
  Copyright terms: Public domain W3C validator