![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleq2 | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2727 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 1, 2 | neleq12d 3045 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∉ wnel 3040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2718 df-clel 2804 df-nel 3041 |
This theorem is referenced by: noinfep 9654 isfbas 23684 upgrreslem 29065 umgrreslem 29066 nbgrnvtx0 29100 nbupgrres 29125 eupth2lem3lem6 29991 frgrncvvdeqlem1 30057 frgrwopreglem4a 30068 |
Copyright terms: Public domain | W3C validator |