![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleq2 | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2781 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 1, 2 | neleq12d 3079 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∉ 𝐴 ↔ 𝐶 ∉ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1508 ∉ wnel 3075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-ext 2752 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1744 df-cleq 2773 df-clel 2848 df-nel 3076 |
This theorem is referenced by: noinfep 8923 wrdlndmOLD 13697 isfbas 22156 upgrreslem 26804 umgrreslem 26805 nbgrnvtx0 26839 nbupgrres 26864 eupth2lem3lem6 27778 frgrncvvdeqlem1 27848 frgrwopreglem4a 27859 |
Copyright terms: Public domain | W3C validator |