Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgrnself | Structured version Visualization version GIF version |
Description: A vertex in a graph is not a neighbor of itself. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
nbgrnself.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrnself | ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsnd 4723 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 → ¬ 𝑣 ∈ (𝑉 ∖ {𝑣})) | |
2 | 1 | intnanrd 489 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
3 | df-nel 3049 | . . . . 5 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ 𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) | |
4 | preq2 4667 | . . . . . . . 8 ⊢ (𝑛 = 𝑣 → {𝑣, 𝑛} = {𝑣, 𝑣}) | |
5 | 4 | sseq1d 3948 | . . . . . . 7 ⊢ (𝑛 = 𝑣 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑣} ⊆ 𝑒)) |
6 | 5 | rexbidv 3225 | . . . . . 6 ⊢ (𝑛 = 𝑣 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
7 | 6 | elrab 3617 | . . . . 5 ⊢ (𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
8 | 3, 7 | xchbinx 333 | . . . 4 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
9 | 2, 8 | sylibr 233 | . . 3 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
10 | eqidd 2739 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → 𝑣 = 𝑣) | |
11 | nbgrnself.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | eqid 2738 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
13 | 11, 12 | nbgrval 27606 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → (𝐺 NeighbVtx 𝑣) = {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
14 | 10, 13 | neleq12d 3052 | . . 3 ⊢ (𝑣 ∈ 𝑉 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})) |
15 | 9, 14 | mpbird 256 | . 2 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ (𝐺 NeighbVtx 𝑣)) |
16 | 15 | rgen 3073 | 1 ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ∀wral 3063 ∃wrex 3064 {crab 3067 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 {cpr 4560 ‘cfv 6418 (class class class)co 7255 Vtxcvtx 27269 Edgcedg 27320 NeighbVtx cnbgr 27602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-nbgr 27603 |
This theorem is referenced by: nbgrnself2 27630 |
Copyright terms: Public domain | W3C validator |