MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrnself Structured version   Visualization version   GIF version

Theorem nbgrnself 29286
Description: A vertex in a graph is not a neighbor of itself. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
nbgrnself.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrnself 𝑣𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣)
Distinct variable group:   𝑣,𝑉
Allowed substitution hint:   𝐺(𝑣)

Proof of Theorem nbgrnself
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neldifsnd 4757 . . . . 5 (𝑣𝑉 → ¬ 𝑣 ∈ (𝑉 ∖ {𝑣}))
21intnanrd 489 . . . 4 (𝑣𝑉 → ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
3 df-nel 3030 . . . . 5 (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ 𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})
4 preq2 4698 . . . . . . . 8 (𝑛 = 𝑣 → {𝑣, 𝑛} = {𝑣, 𝑣})
54sseq1d 3978 . . . . . . 7 (𝑛 = 𝑣 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑣} ⊆ 𝑒))
65rexbidv 3157 . . . . . 6 (𝑛 = 𝑣 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
76elrab 3659 . . . . 5 (𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
83, 7xchbinx 334 . . . 4 (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
92, 8sylibr 234 . . 3 (𝑣𝑉𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})
10 eqidd 2730 . . . 4 (𝑣𝑉𝑣 = 𝑣)
11 nbgrnself.v . . . . 5 𝑉 = (Vtx‘𝐺)
12 eqid 2729 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
1311, 12nbgrval 29263 . . . 4 (𝑣𝑉 → (𝐺 NeighbVtx 𝑣) = {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})
1410, 13neleq12d 3034 . . 3 (𝑣𝑉 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}))
159, 14mpbird 257 . 2 (𝑣𝑉𝑣 ∉ (𝐺 NeighbVtx 𝑣))
1615rgen 3046 1 𝑣𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wnel 3029  wral 3044  wrex 3053  {crab 3405  cdif 3911  wss 3914  {csn 4589  {cpr 4591  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974   NeighbVtx cnbgr 29259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-nbgr 29260
This theorem is referenced by:  nbgrnself2  29287
  Copyright terms: Public domain W3C validator