| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgrnself | Structured version Visualization version GIF version | ||
| Description: A vertex in a graph is not a neighbor of itself. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 21-Mar-2021.) |
| Ref | Expression |
|---|---|
| nbgrnself.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| nbgrnself | ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsnd 4760 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 → ¬ 𝑣 ∈ (𝑉 ∖ {𝑣})) | |
| 2 | 1 | intnanrd 489 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
| 3 | df-nel 3031 | . . . . 5 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ 𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) | |
| 4 | preq2 4701 | . . . . . . . 8 ⊢ (𝑛 = 𝑣 → {𝑣, 𝑛} = {𝑣, 𝑣}) | |
| 5 | 4 | sseq1d 3981 | . . . . . . 7 ⊢ (𝑛 = 𝑣 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑣} ⊆ 𝑒)) |
| 6 | 5 | rexbidv 3158 | . . . . . 6 ⊢ (𝑛 = 𝑣 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
| 7 | 6 | elrab 3662 | . . . . 5 ⊢ (𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
| 8 | 3, 7 | xchbinx 334 | . . . 4 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
| 9 | 2, 8 | sylibr 234 | . . 3 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
| 10 | eqidd 2731 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → 𝑣 = 𝑣) | |
| 11 | nbgrnself.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | eqid 2730 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 13 | 11, 12 | nbgrval 29270 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → (𝐺 NeighbVtx 𝑣) = {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
| 14 | 10, 13 | neleq12d 3035 | . . 3 ⊢ (𝑣 ∈ 𝑉 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})) |
| 15 | 9, 14 | mpbird 257 | . 2 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ (𝐺 NeighbVtx 𝑣)) |
| 16 | 15 | rgen 3047 | 1 ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 ∀wral 3045 ∃wrex 3054 {crab 3408 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 {cpr 4594 ‘cfv 6514 (class class class)co 7390 Vtxcvtx 28930 Edgcedg 28981 NeighbVtx cnbgr 29266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-nbgr 29267 |
| This theorem is referenced by: nbgrnself2 29294 |
| Copyright terms: Public domain | W3C validator |