MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrnself Structured version   Visualization version   GIF version

Theorem nbgrnself 29391
Description: A vertex in a graph is not a neighbor of itself. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
nbgrnself.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbgrnself 𝑣𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣)
Distinct variable group:   𝑣,𝑉
Allowed substitution hint:   𝐺(𝑣)

Proof of Theorem nbgrnself
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neldifsnd 4798 . . . . 5 (𝑣𝑉 → ¬ 𝑣 ∈ (𝑉 ∖ {𝑣}))
21intnanrd 489 . . . 4 (𝑣𝑉 → ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
3 df-nel 3045 . . . . 5 (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ 𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})
4 preq2 4739 . . . . . . . 8 (𝑛 = 𝑣 → {𝑣, 𝑛} = {𝑣, 𝑣})
54sseq1d 4027 . . . . . . 7 (𝑛 = 𝑣 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑣} ⊆ 𝑒))
65rexbidv 3177 . . . . . 6 (𝑛 = 𝑣 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
76elrab 3695 . . . . 5 (𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
83, 7xchbinx 334 . . . 4 (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒))
92, 8sylibr 234 . . 3 (𝑣𝑉𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})
10 eqidd 2736 . . . 4 (𝑣𝑉𝑣 = 𝑣)
11 nbgrnself.v . . . . 5 𝑉 = (Vtx‘𝐺)
12 eqid 2735 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
1311, 12nbgrval 29368 . . . 4 (𝑣𝑉 → (𝐺 NeighbVtx 𝑣) = {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})
1410, 13neleq12d 3049 . . 3 (𝑣𝑉 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}))
159, 14mpbird 257 . 2 (𝑣𝑉𝑣 ∉ (𝐺 NeighbVtx 𝑣))
1615rgen 3061 1 𝑣𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2106  wnel 3044  wral 3059  wrex 3068  {crab 3433  cdif 3960  wss 3963  {csn 4631  {cpr 4633  cfv 6563  (class class class)co 7431  Vtxcvtx 29028  Edgcedg 29079   NeighbVtx cnbgr 29364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-nbgr 29365
This theorem is referenced by:  nbgrnself2  29392
  Copyright terms: Public domain W3C validator