| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbgrnself | Structured version Visualization version GIF version | ||
| Description: A vertex in a graph is not a neighbor of itself. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 21-Mar-2021.) |
| Ref | Expression |
|---|---|
| nbgrnself.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| nbgrnself | ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsnd 4744 | . . . . 5 ⊢ (𝑣 ∈ 𝑉 → ¬ 𝑣 ∈ (𝑉 ∖ {𝑣})) | |
| 2 | 1 | intnanrd 489 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
| 3 | df-nel 3030 | . . . . 5 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ 𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) | |
| 4 | preq2 4686 | . . . . . . . 8 ⊢ (𝑛 = 𝑣 → {𝑣, 𝑛} = {𝑣, 𝑣}) | |
| 5 | 4 | sseq1d 3967 | . . . . . . 7 ⊢ (𝑛 = 𝑣 → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑣} ⊆ 𝑒)) |
| 6 | 5 | rexbidv 3153 | . . . . . 6 ⊢ (𝑛 = 𝑣 → (∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
| 7 | 6 | elrab 3648 | . . . . 5 ⊢ (𝑣 ∈ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
| 8 | 3, 7 | xchbinx 334 | . . . 4 ⊢ (𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒} ↔ ¬ (𝑣 ∈ (𝑉 ∖ {𝑣}) ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑣} ⊆ 𝑒)) |
| 9 | 2, 8 | sylibr 234 | . . 3 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
| 10 | eqidd 2730 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → 𝑣 = 𝑣) | |
| 11 | nbgrnself.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | eqid 2729 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 13 | 11, 12 | nbgrval 29281 | . . . 4 ⊢ (𝑣 ∈ 𝑉 → (𝐺 NeighbVtx 𝑣) = {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒}) |
| 14 | 10, 13 | neleq12d 3034 | . . 3 ⊢ (𝑣 ∈ 𝑉 → (𝑣 ∉ (𝐺 NeighbVtx 𝑣) ↔ 𝑣 ∉ {𝑛 ∈ (𝑉 ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒})) |
| 15 | 9, 14 | mpbird 257 | . 2 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∉ (𝐺 NeighbVtx 𝑣)) |
| 16 | 15 | rgen 3046 | 1 ⊢ ∀𝑣 ∈ 𝑉 𝑣 ∉ (𝐺 NeighbVtx 𝑣) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 ∃wrex 3053 {crab 3394 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 {cpr 4579 ‘cfv 6482 (class class class)co 7349 Vtxcvtx 28941 Edgcedg 28992 NeighbVtx cnbgr 29277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-nbgr 29278 |
| This theorem is referenced by: nbgrnself2 29305 |
| Copyright terms: Public domain | W3C validator |