MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1 Structured version   Visualization version   GIF version

Theorem uhgrspan1 27093
Description: The induced subgraph 𝑆 of a hypergraph 𝐺 obtained by removing one vertex is actually a subgraph of 𝐺. A subgraph is called induced or spanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
uhgrspan1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
Assertion
Ref Expression
uhgrspan1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → 𝑆 SubGraph 𝐺)
Distinct variable groups:   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝑆(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem uhgrspan1
Dummy variables 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4060 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑉 ∖ {𝑁}) ⊆ 𝑉)
2 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
3 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
4 uhgrspan1.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
5 uhgrspan1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
62, 3, 4, 5uhgrspan1lem3 27092 . . 3 (iEdg‘𝑆) = (𝐼𝐹)
7 resresdm 6057 . . 3 ((iEdg‘𝑆) = (𝐼𝐹) → (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)))
86, 7mp1i 13 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)))
93uhgrfun 26859 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
10 fvelima 6706 . . . . . . 7 ((Fun 𝐼𝑐 ∈ (𝐼𝐹)) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐)
1110ex 416 . . . . . 6 (Fun 𝐼 → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
129, 11syl 17 . . . . 5 (𝐺 ∈ UHGraph → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
1312adantr 484 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
14 eqidd 2799 . . . . . . . 8 (𝑖 = 𝑗𝑁 = 𝑁)
15 fveq2 6645 . . . . . . . 8 (𝑖 = 𝑗 → (𝐼𝑖) = (𝐼𝑗))
1614, 15neleq12d 3095 . . . . . . 7 (𝑖 = 𝑗 → (𝑁 ∉ (𝐼𝑖) ↔ 𝑁 ∉ (𝐼𝑗)))
1716, 4elrab2 3631 . . . . . 6 (𝑗𝐹 ↔ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗)))
18 fvexd 6660 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ∈ V)
192, 3uhgrss 26857 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom 𝐼) → (𝐼𝑗) ⊆ 𝑉)
2019ad2ant2r 746 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ⊆ 𝑉)
21 simprr 772 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → 𝑁 ∉ (𝐼𝑗))
22 elpwdifsn 4682 . . . . . . . . 9 (((𝐼𝑗) ∈ V ∧ (𝐼𝑗) ⊆ 𝑉𝑁 ∉ (𝐼𝑗)) → (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2318, 20, 21, 22syl3anc 1368 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
24 eleq1 2877 . . . . . . . . 9 (𝑐 = (𝐼𝑗) → (𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}) ↔ (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2524eqcoms 2806 . . . . . . . 8 ((𝐼𝑗) = 𝑐 → (𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}) ↔ (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2623, 25syl5ibrcom 250 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2726ex 416 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗)) → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}))))
2817, 27syl5bi 245 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑗𝐹 → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}))))
2928rexlimdv 3242 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (∃𝑗𝐹 (𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
3013, 29syld 47 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑐 ∈ (𝐼𝐹) → 𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
3130ssrdv 3921 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))
32 opex 5321 . . . . 5 ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩ ∈ V
335, 32eqeltri 2886 . . . 4 𝑆 ∈ V
3433a1i 11 . . 3 (𝑁𝑉𝑆 ∈ V)
352, 3, 4, 5uhgrspan1lem2 27091 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
3635eqcomi 2807 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
37 eqid 2798 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
386rneqi 5771 . . . . 5 ran (iEdg‘𝑆) = ran (𝐼𝐹)
39 edgval 26842 . . . . 5 (Edg‘𝑆) = ran (iEdg‘𝑆)
40 df-ima 5532 . . . . 5 (𝐼𝐹) = ran (𝐼𝐹)
4138, 39, 403eqtr4ri 2832 . . . 4 (𝐼𝐹) = (Edg‘𝑆)
4236, 2, 37, 3, 41issubgr 27061 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 ↔ ((𝑉 ∖ {𝑁}) ⊆ 𝑉 ∧ (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)) ∧ (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))))
4334, 42sylan2 595 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑆 SubGraph 𝐺 ↔ ((𝑉 ∖ {𝑁}) ⊆ 𝑉 ∧ (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)) ∧ (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))))
441, 8, 31, 43mpbir3and 1339 1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wnel 3091  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  𝒫 cpw 4497  {csn 4525  cop 4531   class class class wbr 5030  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Fun wfun 6318  cfv 6324  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  UHGraphcuhgr 26849   SubGraph csubgr 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-1st 7671  df-2nd 7672  df-vtx 26791  df-iedg 26792  df-edg 26841  df-uhgr 26851  df-subgr 27058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator