MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1 Structured version   Visualization version   GIF version

Theorem uhgrspan1 27959
Description: The induced subgraph 𝑆 of a hypergraph 𝐺 obtained by removing one vertex is actually a subgraph of 𝐺. A subgraph is called induced or spanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
uhgrspan1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
Assertion
Ref Expression
uhgrspan1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → 𝑆 SubGraph 𝐺)
Distinct variable groups:   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝑆(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem uhgrspan1
Dummy variables 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4079 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑉 ∖ {𝑁}) ⊆ 𝑉)
2 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
3 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
4 uhgrspan1.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
5 uhgrspan1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
62, 3, 4, 5uhgrspan1lem3 27958 . . 3 (iEdg‘𝑆) = (𝐼𝐹)
7 resresdm 6171 . . 3 ((iEdg‘𝑆) = (𝐼𝐹) → (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)))
86, 7mp1i 13 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)))
93uhgrfun 27725 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
10 fvelima 6891 . . . . . . 7 ((Fun 𝐼𝑐 ∈ (𝐼𝐹)) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐)
1110ex 413 . . . . . 6 (Fun 𝐼 → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
129, 11syl 17 . . . . 5 (𝐺 ∈ UHGraph → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
1312adantr 481 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
14 eqidd 2737 . . . . . . . 8 (𝑖 = 𝑗𝑁 = 𝑁)
15 fveq2 6825 . . . . . . . 8 (𝑖 = 𝑗 → (𝐼𝑖) = (𝐼𝑗))
1614, 15neleq12d 3050 . . . . . . 7 (𝑖 = 𝑗 → (𝑁 ∉ (𝐼𝑖) ↔ 𝑁 ∉ (𝐼𝑗)))
1716, 4elrab2 3637 . . . . . 6 (𝑗𝐹 ↔ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗)))
18 fvexd 6840 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ∈ V)
192, 3uhgrss 27723 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom 𝐼) → (𝐼𝑗) ⊆ 𝑉)
2019ad2ant2r 744 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ⊆ 𝑉)
21 simprr 770 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → 𝑁 ∉ (𝐼𝑗))
22 elpwdifsn 4736 . . . . . . . . 9 (((𝐼𝑗) ∈ V ∧ (𝐼𝑗) ⊆ 𝑉𝑁 ∉ (𝐼𝑗)) → (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2318, 20, 21, 22syl3anc 1370 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
24 eleq1 2824 . . . . . . . . 9 (𝑐 = (𝐼𝑗) → (𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}) ↔ (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2524eqcoms 2744 . . . . . . . 8 ((𝐼𝑗) = 𝑐 → (𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}) ↔ (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2623, 25syl5ibrcom 246 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2726ex 413 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗)) → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}))))
2817, 27biimtrid 241 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑗𝐹 → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}))))
2928rexlimdv 3146 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (∃𝑗𝐹 (𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
3013, 29syld 47 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑐 ∈ (𝐼𝐹) → 𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
3130ssrdv 3938 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))
32 opex 5409 . . . . 5 ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩ ∈ V
335, 32eqeltri 2833 . . . 4 𝑆 ∈ V
3433a1i 11 . . 3 (𝑁𝑉𝑆 ∈ V)
352, 3, 4, 5uhgrspan1lem2 27957 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
3635eqcomi 2745 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
37 eqid 2736 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
386rneqi 5878 . . . . 5 ran (iEdg‘𝑆) = ran (𝐼𝐹)
39 edgval 27708 . . . . 5 (Edg‘𝑆) = ran (iEdg‘𝑆)
40 df-ima 5633 . . . . 5 (𝐼𝐹) = ran (𝐼𝐹)
4138, 39, 403eqtr4ri 2775 . . . 4 (𝐼𝐹) = (Edg‘𝑆)
4236, 2, 37, 3, 41issubgr 27927 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 ↔ ((𝑉 ∖ {𝑁}) ⊆ 𝑉 ∧ (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)) ∧ (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))))
4334, 42sylan2 593 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑆 SubGraph 𝐺 ↔ ((𝑉 ∖ {𝑁}) ⊆ 𝑉 ∧ (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)) ∧ (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))))
441, 8, 31, 43mpbir3and 1341 1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wnel 3046  wrex 3070  {crab 3403  Vcvv 3441  cdif 3895  wss 3898  𝒫 cpw 4547  {csn 4573  cop 4579   class class class wbr 5092  dom cdm 5620  ran crn 5621  cres 5622  cima 5623  Fun wfun 6473  cfv 6479  Vtxcvtx 27655  iEdgciedg 27656  Edgcedg 27706  UHGraphcuhgr 27715   SubGraph csubgr 27923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-fv 6487  df-1st 7899  df-2nd 7900  df-vtx 27657  df-iedg 27658  df-edg 27707  df-uhgr 27717  df-subgr 27924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator