MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1 Structured version   Visualization version   GIF version

Theorem uhgrspan1 27670
Description: The induced subgraph 𝑆 of a hypergraph 𝐺 obtained by removing one vertex is actually a subgraph of 𝐺. A subgraph is called induced or spanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in [Bollobas] p. 2 and section 1.1 in [Diestel] p. 4). (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
uhgrspan1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
Assertion
Ref Expression
uhgrspan1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → 𝑆 SubGraph 𝐺)
Distinct variable groups:   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝑆(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem uhgrspan1
Dummy variables 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4067 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑉 ∖ {𝑁}) ⊆ 𝑉)
2 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
3 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
4 uhgrspan1.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
5 uhgrspan1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
62, 3, 4, 5uhgrspan1lem3 27669 . . 3 (iEdg‘𝑆) = (𝐼𝐹)
7 resresdm 6136 . . 3 ((iEdg‘𝑆) = (𝐼𝐹) → (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)))
86, 7mp1i 13 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)))
93uhgrfun 27436 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
10 fvelima 6835 . . . . . . 7 ((Fun 𝐼𝑐 ∈ (𝐼𝐹)) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐)
1110ex 413 . . . . . 6 (Fun 𝐼 → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
129, 11syl 17 . . . . 5 (𝐺 ∈ UHGraph → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
1312adantr 481 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑐 ∈ (𝐼𝐹) → ∃𝑗𝐹 (𝐼𝑗) = 𝑐))
14 eqidd 2739 . . . . . . . 8 (𝑖 = 𝑗𝑁 = 𝑁)
15 fveq2 6774 . . . . . . . 8 (𝑖 = 𝑗 → (𝐼𝑖) = (𝐼𝑗))
1614, 15neleq12d 3053 . . . . . . 7 (𝑖 = 𝑗 → (𝑁 ∉ (𝐼𝑖) ↔ 𝑁 ∉ (𝐼𝑗)))
1716, 4elrab2 3627 . . . . . 6 (𝑗𝐹 ↔ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗)))
18 fvexd 6789 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ∈ V)
192, 3uhgrss 27434 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom 𝐼) → (𝐼𝑗) ⊆ 𝑉)
2019ad2ant2r 744 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ⊆ 𝑉)
21 simprr 770 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → 𝑁 ∉ (𝐼𝑗))
22 elpwdifsn 4722 . . . . . . . . 9 (((𝐼𝑗) ∈ V ∧ (𝐼𝑗) ⊆ 𝑉𝑁 ∉ (𝐼𝑗)) → (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2318, 20, 21, 22syl3anc 1370 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
24 eleq1 2826 . . . . . . . . 9 (𝑐 = (𝐼𝑗) → (𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}) ↔ (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2524eqcoms 2746 . . . . . . . 8 ((𝐼𝑗) = 𝑐 → (𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}) ↔ (𝐼𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2623, 25syl5ibrcom 246 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗))) → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
2726ex 413 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼𝑁 ∉ (𝐼𝑗)) → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}))))
2817, 27syl5bi 241 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑗𝐹 → ((𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁}))))
2928rexlimdv 3212 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (∃𝑗𝐹 (𝐼𝑗) = 𝑐𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
3013, 29syld 47 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑐 ∈ (𝐼𝐹) → 𝑐 ∈ 𝒫 (𝑉 ∖ {𝑁})))
3130ssrdv 3927 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))
32 opex 5379 . . . . 5 ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩ ∈ V
335, 32eqeltri 2835 . . . 4 𝑆 ∈ V
3433a1i 11 . . 3 (𝑁𝑉𝑆 ∈ V)
352, 3, 4, 5uhgrspan1lem2 27668 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
3635eqcomi 2747 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
37 eqid 2738 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
386rneqi 5846 . . . . 5 ran (iEdg‘𝑆) = ran (𝐼𝐹)
39 edgval 27419 . . . . 5 (Edg‘𝑆) = ran (iEdg‘𝑆)
40 df-ima 5602 . . . . 5 (𝐼𝐹) = ran (𝐼𝐹)
4138, 39, 403eqtr4ri 2777 . . . 4 (𝐼𝐹) = (Edg‘𝑆)
4236, 2, 37, 3, 41issubgr 27638 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆 ∈ V) → (𝑆 SubGraph 𝐺 ↔ ((𝑉 ∖ {𝑁}) ⊆ 𝑉 ∧ (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)) ∧ (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))))
4334, 42sylan2 593 . 2 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → (𝑆 SubGraph 𝐺 ↔ ((𝑉 ∖ {𝑁}) ⊆ 𝑉 ∧ (iEdg‘𝑆) = (𝐼 ↾ dom (iEdg‘𝑆)) ∧ (𝐼𝐹) ⊆ 𝒫 (𝑉 ∖ {𝑁}))))
441, 8, 31, 43mpbir3and 1341 1 ((𝐺 ∈ UHGraph ∧ 𝑁𝑉) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wnel 3049  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  𝒫 cpw 4533  {csn 4561  cop 4567   class class class wbr 5074  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UHGraphcuhgr 27426   SubGraph csubgr 27634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-1st 7831  df-2nd 7832  df-vtx 27368  df-iedg 27369  df-edg 27418  df-uhgr 27428  df-subgr 27635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator