| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2736 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | neleq12d 3041 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∉ wnel 3036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-nel 3037 |
| This theorem is referenced by: ruALT 9617 ssnn0fi 14003 cnpart 15259 sqrmo 15270 resqrtcl 15272 resqrtthlem 15273 sqrtneg 15286 sqreu 15379 sqrtthlem 15381 eqsqrtd 15386 ge2nprmge4 16720 prmgaplem7 17077 mgmnsgrpex 18909 sgrpnmndex 18910 iccpnfcnv 24893 griedg0prc 29243 nbgrssovtx 29340 rgrusgrprc 29569 rusgrprc 29570 rgrprcx 29572 frgrwopreglem4a 30291 xrge0iifcnv 33964 0nn0m1nnn0 35135 fpprel 47742 gpg5nbgrvtx03star 48082 gpg5nbgr3star 48083 oddinmgm 48150 |
| Copyright terms: Public domain | W3C validator |