Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2739 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | neleq12d 3052 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∉ wnel 3048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-nel 3049 |
This theorem is referenced by: ruALT 9292 ssnn0fi 13633 cnpart 14879 sqrmo 14891 resqrtcl 14893 resqrtthlem 14894 sqrtneg 14907 sqreu 15000 sqrtthlem 15002 eqsqrtd 15007 ge2nprmge4 16334 prmgaplem7 16686 mgmnsgrpex 18485 sgrpnmndex 18486 iccpnfcnv 24013 griedg0prc 27534 nbgrssovtx 27631 rgrusgrprc 27859 rusgrprc 27860 rgrprcx 27862 frgrwopreglem4a 28575 xrge0iifcnv 31785 0nn0m1nnn0 32971 fpprel 45068 oddinmgm 45257 |
Copyright terms: Public domain | W3C validator |