Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2737 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | neleq12d 3050 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∉ wnel 3046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2728 df-clel 2814 df-nel 3047 |
This theorem is referenced by: ruALT 9461 ssnn0fi 13807 cnpart 15051 sqrmo 15063 resqrtcl 15065 resqrtthlem 15066 sqrtneg 15079 sqreu 15172 sqrtthlem 15174 eqsqrtd 15179 ge2nprmge4 16504 prmgaplem7 16856 mgmnsgrpex 18667 sgrpnmndex 18668 iccpnfcnv 24214 griedg0prc 27921 nbgrssovtx 28018 rgrusgrprc 28246 rusgrprc 28247 rgrprcx 28249 frgrwopreglem4a 28963 xrge0iifcnv 32181 0nn0m1nnn0 33370 fpprel 45598 oddinmgm 45787 |
Copyright terms: Public domain | W3C validator |