![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2736 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | neleq12d 3049 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∉ wnel 3044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 df-nel 3045 |
This theorem is referenced by: ruALT 9641 ssnn0fi 14023 cnpart 15276 sqrmo 15287 resqrtcl 15289 resqrtthlem 15290 sqrtneg 15303 sqreu 15396 sqrtthlem 15398 eqsqrtd 15403 ge2nprmge4 16735 prmgaplem7 17091 mgmnsgrpex 18957 sgrpnmndex 18958 iccpnfcnv 24989 griedg0prc 29296 nbgrssovtx 29393 rgrusgrprc 29622 rusgrprc 29623 rgrprcx 29625 frgrwopreglem4a 30339 xrge0iifcnv 33894 0nn0m1nnn0 35097 fpprel 47653 gpg5nbgrvtx03star 47971 gpg5nbgr3star 47972 oddinmgm 48019 |
Copyright terms: Public domain | W3C validator |