Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2738 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | neleq12d 3050 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∉ wnel 3046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2729 df-clel 2816 df-nel 3047 |
This theorem is referenced by: ruALT 9219 ssnn0fi 13558 cnpart 14803 sqrmo 14815 resqrtcl 14817 resqrtthlem 14818 sqrtneg 14831 sqreu 14924 sqrtthlem 14926 eqsqrtd 14931 ge2nprmge4 16258 prmgaplem7 16610 mgmnsgrpex 18358 sgrpnmndex 18359 iccpnfcnv 23841 griedg0prc 27352 nbgrssovtx 27449 rgrusgrprc 27677 rusgrprc 27678 rgrprcx 27680 frgrwopreglem4a 28393 xrge0iifcnv 31597 0nn0m1nnn0 32784 fpprel 44853 oddinmgm 45042 |
Copyright terms: Public domain | W3C validator |