| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2734 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | neleq12d 3038 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∉ wnel 3033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-clel 2808 df-nel 3034 |
| This theorem is referenced by: ruALT 9499 ssnn0fi 13894 cnpart 15149 sqrmo 15160 resqrtcl 15162 resqrtthlem 15163 sqrtneg 15176 sqreu 15270 sqrtthlem 15272 eqsqrtd 15277 ge2nprmge4 16614 prmgaplem7 16971 mgmnsgrpex 18841 sgrpnmndex 18842 iccpnfcnv 24870 griedg0prc 29244 nbgrssovtx 29341 rgrusgrprc 29570 rusgrprc 29571 rgrprcx 29573 frgrwopreglem4a 30292 xrge0iifcnv 33967 0nn0m1nnn0 35178 fpprel 47852 gpg5nbgrvtx03star 48204 gpg5nbgr3star 48205 grlimedgnedg 48255 oddinmgm 48299 |
| Copyright terms: Public domain | W3C validator |