| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | neleq12d 3034 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∉ wnel 3029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-nel 3030 |
| This theorem is referenced by: ruALT 9517 ssnn0fi 13910 cnpart 15165 sqrmo 15176 resqrtcl 15178 resqrtthlem 15179 sqrtneg 15192 sqreu 15286 sqrtthlem 15288 eqsqrtd 15293 ge2nprmge4 16630 prmgaplem7 16987 mgmnsgrpex 18823 sgrpnmndex 18824 iccpnfcnv 24858 griedg0prc 29227 nbgrssovtx 29324 rgrusgrprc 29553 rusgrprc 29554 rgrprcx 29556 frgrwopreglem4a 30272 xrge0iifcnv 33899 0nn0m1nnn0 35085 fpprel 47713 gpg5nbgrvtx03star 48065 gpg5nbgr3star 48066 grlimedgnedg 48116 oddinmgm 48160 |
| Copyright terms: Public domain | W3C validator |