| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2732 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | neleq12d 3037 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∉ wnel 3032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-nel 3033 |
| This theorem is referenced by: ruALT 9492 ssnn0fi 13889 cnpart 15144 sqrmo 15155 resqrtcl 15157 resqrtthlem 15158 sqrtneg 15171 sqreu 15265 sqrtthlem 15267 eqsqrtd 15272 ge2nprmge4 16609 prmgaplem7 16966 mgmnsgrpex 18836 sgrpnmndex 18837 iccpnfcnv 24867 griedg0prc 29240 nbgrssovtx 29337 rgrusgrprc 29566 rusgrprc 29567 rgrprcx 29569 frgrwopreglem4a 30285 xrge0iifcnv 33941 0nn0m1nnn0 35145 fpprel 47758 gpg5nbgrvtx03star 48110 gpg5nbgr3star 48111 grlimedgnedg 48161 oddinmgm 48205 |
| Copyright terms: Public domain | W3C validator |