MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neleq1 Structured version   Visualization version   GIF version

Theorem neleq1 3036
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
neleq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem neleq1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 eqidd 2731 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
31, 2neleq12d 3035 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wnel 3030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-clel 2804  df-nel 3031
This theorem is referenced by:  ruALT  9563  ssnn0fi  13957  cnpart  15213  sqrmo  15224  resqrtcl  15226  resqrtthlem  15227  sqrtneg  15240  sqreu  15334  sqrtthlem  15336  eqsqrtd  15341  ge2nprmge4  16678  prmgaplem7  17035  mgmnsgrpex  18865  sgrpnmndex  18866  iccpnfcnv  24849  griedg0prc  29198  nbgrssovtx  29295  rgrusgrprc  29524  rusgrprc  29525  rgrprcx  29527  frgrwopreglem4a  30246  xrge0iifcnv  33930  0nn0m1nnn0  35107  fpprel  47733  gpg5nbgrvtx03star  48075  gpg5nbgr3star  48076  oddinmgm  48167
  Copyright terms: Public domain W3C validator