| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2731 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | neleq12d 3035 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∉ wnel 3030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-nel 3031 |
| This theorem is referenced by: ruALT 9563 ssnn0fi 13957 cnpart 15213 sqrmo 15224 resqrtcl 15226 resqrtthlem 15227 sqrtneg 15240 sqreu 15334 sqrtthlem 15336 eqsqrtd 15341 ge2nprmge4 16678 prmgaplem7 17035 mgmnsgrpex 18865 sgrpnmndex 18866 iccpnfcnv 24849 griedg0prc 29198 nbgrssovtx 29295 rgrusgrprc 29524 rusgrprc 29525 rgrprcx 29527 frgrwopreglem4a 30246 xrge0iifcnv 33930 0nn0m1nnn0 35107 fpprel 47733 gpg5nbgrvtx03star 48075 gpg5nbgr3star 48076 oddinmgm 48167 |
| Copyright terms: Public domain | W3C validator |