![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2741 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | neleq12d 3057 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∉ wnel 3052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-nel 3053 |
This theorem is referenced by: ruALT 9672 ssnn0fi 14036 cnpart 15289 sqrmo 15300 resqrtcl 15302 resqrtthlem 15303 sqrtneg 15316 sqreu 15409 sqrtthlem 15411 eqsqrtd 15416 ge2nprmge4 16748 prmgaplem7 17104 mgmnsgrpex 18966 sgrpnmndex 18967 iccpnfcnv 24994 griedg0prc 29299 nbgrssovtx 29396 rgrusgrprc 29625 rusgrprc 29626 rgrprcx 29628 frgrwopreglem4a 30342 xrge0iifcnv 33879 0nn0m1nnn0 35080 fpprel 47602 oddinmgm 47898 |
Copyright terms: Public domain | W3C validator |