| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | neleq12d 3034 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∉ wnel 3029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-nel 3030 |
| This theorem is referenced by: ruALT 9556 ssnn0fi 13950 cnpart 15206 sqrmo 15217 resqrtcl 15219 resqrtthlem 15220 sqrtneg 15233 sqreu 15327 sqrtthlem 15329 eqsqrtd 15334 ge2nprmge4 16671 prmgaplem7 17028 mgmnsgrpex 18858 sgrpnmndex 18859 iccpnfcnv 24842 griedg0prc 29191 nbgrssovtx 29288 rgrusgrprc 29517 rusgrprc 29518 rgrprcx 29520 frgrwopreglem4a 30239 xrge0iifcnv 33923 0nn0m1nnn0 35100 fpprel 47729 gpg5nbgrvtx03star 48071 gpg5nbgr3star 48072 oddinmgm 48163 |
| Copyright terms: Public domain | W3C validator |