MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neleq1 Structured version   Visualization version   GIF version

Theorem neleq1 3038
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
neleq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem neleq1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 eqidd 2732 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
31, 2neleq12d 3037 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wnel 3032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806  df-nel 3033
This theorem is referenced by:  ruALT  9492  ssnn0fi  13889  cnpart  15144  sqrmo  15155  resqrtcl  15157  resqrtthlem  15158  sqrtneg  15171  sqreu  15265  sqrtthlem  15267  eqsqrtd  15272  ge2nprmge4  16609  prmgaplem7  16966  mgmnsgrpex  18836  sgrpnmndex  18837  iccpnfcnv  24867  griedg0prc  29240  nbgrssovtx  29337  rgrusgrprc  29566  rusgrprc  29567  rgrprcx  29569  frgrwopreglem4a  30285  xrge0iifcnv  33941  0nn0m1nnn0  35145  fpprel  47758  gpg5nbgrvtx03star  48110  gpg5nbgr3star  48111  grlimedgnedg  48161  oddinmgm  48205
  Copyright terms: Public domain W3C validator