Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleq1 | Structured version Visualization version GIF version |
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
neleq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2739 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | neleq12d 3053 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∉ wnel 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 df-nel 3050 |
This theorem is referenced by: ruALT 9362 ssnn0fi 13705 cnpart 14951 sqrmo 14963 resqrtcl 14965 resqrtthlem 14966 sqrtneg 14979 sqreu 15072 sqrtthlem 15074 eqsqrtd 15079 ge2nprmge4 16406 prmgaplem7 16758 mgmnsgrpex 18570 sgrpnmndex 18571 iccpnfcnv 24107 griedg0prc 27631 nbgrssovtx 27728 rgrusgrprc 27956 rusgrprc 27957 rgrprcx 27959 frgrwopreglem4a 28674 xrge0iifcnv 31883 0nn0m1nnn0 33071 fpprel 45180 oddinmgm 45369 |
Copyright terms: Public domain | W3C validator |