MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neleq1 Structured version   Visualization version   GIF version

Theorem neleq1 3054
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
neleq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem neleq1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 eqidd 2739 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
31, 2neleq12d 3053 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wnel 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816  df-nel 3050
This theorem is referenced by:  ruALT  9362  ssnn0fi  13705  cnpart  14951  sqrmo  14963  resqrtcl  14965  resqrtthlem  14966  sqrtneg  14979  sqreu  15072  sqrtthlem  15074  eqsqrtd  15079  ge2nprmge4  16406  prmgaplem7  16758  mgmnsgrpex  18570  sgrpnmndex  18571  iccpnfcnv  24107  griedg0prc  27631  nbgrssovtx  27728  rgrusgrprc  27956  rusgrprc  27957  rgrprcx  27959  frgrwopreglem4a  28674  xrge0iifcnv  31883  0nn0m1nnn0  33071  fpprel  45180  oddinmgm  45369
  Copyright terms: Public domain W3C validator