MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neleq1 Structured version   Visualization version   GIF version

Theorem neleq1 3058
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Assertion
Ref Expression
neleq1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem neleq1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 eqidd 2741 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
31, 2neleq12d 3057 1 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wnel 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-clel 2819  df-nel 3053
This theorem is referenced by:  ruALT  9672  ssnn0fi  14036  cnpart  15289  sqrmo  15300  resqrtcl  15302  resqrtthlem  15303  sqrtneg  15316  sqreu  15409  sqrtthlem  15411  eqsqrtd  15416  ge2nprmge4  16748  prmgaplem7  17104  mgmnsgrpex  18966  sgrpnmndex  18967  iccpnfcnv  24994  griedg0prc  29299  nbgrssovtx  29396  rgrusgrprc  29625  rusgrprc  29626  rgrprcx  29628  frgrwopreglem4a  30342  xrge0iifcnv  33879  0nn0m1nnn0  35080  fpprel  47602  oddinmgm  47898
  Copyright terms: Public domain W3C validator