| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnprcnex | Structured version Visualization version GIF version | ||
| Description: The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| fsetsnprcnex | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . . . 7 ⊢ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} | |
| 2 | eqid 2736 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) | |
| 3 | 1, 2 | fsetsnf1o 47071 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}):𝐵–1-1-onto→{𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) |
| 4 | f1ovv 7983 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}):𝐵–1-1-onto→{𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V)) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V)) |
| 6 | 5 | notbid 318 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (¬ 𝐵 ∈ V ↔ ¬ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V)) |
| 7 | df-nel 3046 | . . . 4 ⊢ (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V) | |
| 8 | df-nel 3046 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V ↔ ¬ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝐵 ∉ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V)) |
| 10 | 9 | biimpa 476 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V) |
| 11 | fsetabsnop 47067 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) | |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) |
| 13 | eqidd 2737 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → V = V) | |
| 14 | 12, 13 | neleq12d 3050 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → ({𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V)) |
| 15 | 10, 14 | mpbird 257 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∉ wnel 3045 ∃wrex 3069 Vcvv 3479 {csn 4625 〈cop 4631 ↦ cmpt 5224 ⟶wf 6556 –1-1-onto→wf1o 6559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 |
| This theorem is referenced by: fsetprcnexALT 47079 |
| Copyright terms: Public domain | W3C validator |