Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnprcnex Structured version   Visualization version   GIF version

Theorem fsetsnprcnex 47046
Description: The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsnprcnex ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} ∉ V)
Distinct variable groups:   𝐵,𝑓   𝑆,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetsnprcnex
Dummy variables 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . 7 {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
2 eqid 2730 . . . . . . 7 (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}) = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
31, 2fsetsnf1o 47045 . . . . . 6 (𝑆𝑉 → (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵1-1-onto→{𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
4 f1ovv 7938 . . . . . 6 ((𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵1-1-onto→{𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
53, 4syl 17 . . . . 5 (𝑆𝑉 → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
65notbid 318 . . . 4 (𝑆𝑉 → (¬ 𝐵 ∈ V ↔ ¬ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
7 df-nel 3031 . . . 4 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
8 df-nel 3031 . . . 4 ({𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V ↔ ¬ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V)
96, 7, 83bitr4g 314 . . 3 (𝑆𝑉 → (𝐵 ∉ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V))
109biimpa 476 . 2 ((𝑆𝑉𝐵 ∉ V) → {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V)
11 fsetabsnop 47041 . . . 4 (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
1211adantr 480 . . 3 ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
13 eqidd 2731 . . 3 ((𝑆𝑉𝐵 ∉ V) → V = V)
1412, 13neleq12d 3035 . 2 ((𝑆𝑉𝐵 ∉ V) → ({𝑓𝑓:{𝑆}⟶𝐵} ∉ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V))
1510, 14mpbird 257 1 ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wnel 3030  wrex 3054  Vcvv 3450  {csn 4591  cop 4597  cmpt 5190  wf 6509  1-1-ontowf1o 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521
This theorem is referenced by:  fsetprcnexALT  47053
  Copyright terms: Public domain W3C validator