Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnprcnex Structured version   Visualization version   GIF version

Theorem fsetsnprcnex 46064
Description: The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsnprcnex ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} ∉ V)
Distinct variable groups:   𝐵,𝑓   𝑆,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetsnprcnex
Dummy variables 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . 7 {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
2 eqid 2731 . . . . . . 7 (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}) = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
31, 2fsetsnf1o 46063 . . . . . 6 (𝑆𝑉 → (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵1-1-onto→{𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
4 f1ovv 7948 . . . . . 6 ((𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵1-1-onto→{𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
53, 4syl 17 . . . . 5 (𝑆𝑉 → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
65notbid 318 . . . 4 (𝑆𝑉 → (¬ 𝐵 ∈ V ↔ ¬ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
7 df-nel 3046 . . . 4 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
8 df-nel 3046 . . . 4 ({𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V ↔ ¬ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V)
96, 7, 83bitr4g 314 . . 3 (𝑆𝑉 → (𝐵 ∉ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V))
109biimpa 476 . 2 ((𝑆𝑉𝐵 ∉ V) → {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V)
11 fsetabsnop 46059 . . . 4 (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
1211adantr 480 . . 3 ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
13 eqidd 2732 . . 3 ((𝑆𝑉𝐵 ∉ V) → V = V)
1412, 13neleq12d 3050 . 2 ((𝑆𝑉𝐵 ∉ V) → ({𝑓𝑓:{𝑆}⟶𝐵} ∉ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V))
1510, 14mpbird 257 1 ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  {cab 2708  wnel 3045  wrex 3069  Vcvv 3473  {csn 4628  cop 4634  cmpt 5231  wf 6539  1-1-ontowf1o 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by:  fsetprcnexALT  46071
  Copyright terms: Public domain W3C validator