Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnprcnex | Structured version Visualization version GIF version |
Description: The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsnprcnex | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . 7 ⊢ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} | |
2 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) | |
3 | 1, 2 | fsetsnf1o 44548 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}):𝐵–1-1-onto→{𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) |
4 | f1ovv 7800 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}):𝐵–1-1-onto→{𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V)) |
6 | 5 | notbid 318 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (¬ 𝐵 ∈ V ↔ ¬ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V)) |
7 | df-nel 3050 | . . . 4 ⊢ (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V) | |
8 | df-nel 3050 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V ↔ ¬ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V) | |
9 | 6, 7, 8 | 3bitr4g 314 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝐵 ∉ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V)) |
10 | 9 | biimpa 477 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V) |
11 | fsetabsnop 44544 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) | |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) |
13 | eqidd 2739 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → V = V) | |
14 | 12, 13 | neleq12d 3053 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → ({𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V)) |
15 | 10, 14 | mpbird 256 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∉ wnel 3049 ∃wrex 3065 Vcvv 3432 {csn 4561 〈cop 4567 ↦ cmpt 5157 ⟶wf 6429 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: fsetprcnexALT 44556 |
Copyright terms: Public domain | W3C validator |