![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnprcnex | Structured version Visualization version GIF version |
Description: The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsnprcnex | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . 7 ⊢ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} | |
2 | eqid 2740 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) | |
3 | 1, 2 | fsetsnf1o 46969 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}):𝐵–1-1-onto→{𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) |
4 | f1ovv 7998 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}):𝐵–1-1-onto→{𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V)) |
6 | 5 | notbid 318 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (¬ 𝐵 ∈ V ↔ ¬ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V)) |
7 | df-nel 3053 | . . . 4 ⊢ (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V) | |
8 | df-nel 3053 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V ↔ ¬ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∈ V) | |
9 | 6, 7, 8 | 3bitr4g 314 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝐵 ∉ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V)) |
10 | 9 | biimpa 476 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V) |
11 | fsetabsnop 46965 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) |
13 | eqidd 2741 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → V = V) | |
14 | 12, 13 | neleq12d 3057 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → ({𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} ∉ V)) |
15 | 10, 14 | mpbird 257 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∉ wnel 3052 ∃wrex 3076 Vcvv 3488 {csn 4648 〈cop 4654 ↦ cmpt 5249 ⟶wf 6569 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: fsetprcnexALT 46977 |
Copyright terms: Public domain | W3C validator |