Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnprcnex Structured version   Visualization version   GIF version

Theorem fsetsnprcnex 47154
Description: The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsnprcnex ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} ∉ V)
Distinct variable groups:   𝐵,𝑓   𝑆,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetsnprcnex
Dummy variables 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . 7 {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
2 eqid 2731 . . . . . . 7 (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}) = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
31, 2fsetsnf1o 47153 . . . . . 6 (𝑆𝑉 → (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵1-1-onto→{𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
4 f1ovv 7890 . . . . . 6 ((𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵1-1-onto→{𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
53, 4syl 17 . . . . 5 (𝑆𝑉 → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
65notbid 318 . . . 4 (𝑆𝑉 → (¬ 𝐵 ∈ V ↔ ¬ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
7 df-nel 3033 . . . 4 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
8 df-nel 3033 . . . 4 ({𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V ↔ ¬ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V)
96, 7, 83bitr4g 314 . . 3 (𝑆𝑉 → (𝐵 ∉ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V))
109biimpa 476 . 2 ((𝑆𝑉𝐵 ∉ V) → {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V)
11 fsetabsnop 47149 . . . 4 (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
1211adantr 480 . . 3 ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
13 eqidd 2732 . . 3 ((𝑆𝑉𝐵 ∉ V) → V = V)
1412, 13neleq12d 3037 . 2 ((𝑆𝑉𝐵 ∉ V) → ({𝑓𝑓:{𝑆}⟶𝐵} ∉ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V))
1510, 14mpbird 257 1 ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wnel 3032  wrex 3056  Vcvv 3436  {csn 4573  cop 4579  cmpt 5170  wf 6477  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by:  fsetprcnexALT  47161
  Copyright terms: Public domain W3C validator