Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnprcnex Structured version   Visualization version   GIF version

Theorem fsetsnprcnex 44549
Description: The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsnprcnex ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} ∉ V)
Distinct variable groups:   𝐵,𝑓   𝑆,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetsnprcnex
Dummy variables 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . 7 {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
2 eqid 2738 . . . . . . 7 (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}) = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
31, 2fsetsnf1o 44548 . . . . . 6 (𝑆𝑉 → (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵1-1-onto→{𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
4 f1ovv 7800 . . . . . 6 ((𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵1-1-onto→{𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
53, 4syl 17 . . . . 5 (𝑆𝑉 → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
65notbid 318 . . . 4 (𝑆𝑉 → (¬ 𝐵 ∈ V ↔ ¬ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V))
7 df-nel 3050 . . . 4 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
8 df-nel 3050 . . . 4 ({𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V ↔ ¬ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V)
96, 7, 83bitr4g 314 . . 3 (𝑆𝑉 → (𝐵 ∉ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V))
109biimpa 477 . 2 ((𝑆𝑉𝐵 ∉ V) → {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V)
11 fsetabsnop 44544 . . . 4 (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
1211adantr 481 . . 3 ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
13 eqidd 2739 . . 3 ((𝑆𝑉𝐵 ∉ V) → V = V)
1412, 13neleq12d 3053 . 2 ((𝑆𝑉𝐵 ∉ V) → ({𝑓𝑓:{𝑆}⟶𝐵} ∉ V ↔ {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V))
1510, 14mpbird 256 1 ((𝑆𝑉𝐵 ∉ V) → {𝑓𝑓:{𝑆}⟶𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wnel 3049  wrex 3065  Vcvv 3432  {csn 4561  cop 4567  cmpt 5157  wf 6429  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  fsetprcnexALT  44556
  Copyright terms: Public domain W3C validator