![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnprcnex | Structured version Visualization version GIF version |
Description: The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsnprcnex | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . . . . . 7 ⊢ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} | |
2 | eqid 2730 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 ↦ {⟨𝑆, 𝑥⟩}) = (𝑥 ∈ 𝐵 ↦ {⟨𝑆, 𝑥⟩}) | |
3 | 1, 2 | fsetsnf1o 46062 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → (𝑥 ∈ 𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵–1-1-onto→{𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}) |
4 | f1ovv 7946 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ {⟨𝑆, 𝑥⟩}):𝐵–1-1-onto→{𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (𝐵 ∈ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V)) |
6 | 5 | notbid 317 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (¬ 𝐵 ∈ V ↔ ¬ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V)) |
7 | df-nel 3045 | . . . 4 ⊢ (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V) | |
8 | df-nel 3045 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V ↔ ¬ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∈ V) | |
9 | 6, 7, 8 | 3bitr4g 313 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝐵 ∉ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V)) |
10 | 9 | biimpa 475 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V) |
11 | fsetabsnop 46058 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}) | |
12 | 11 | adantr 479 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}) |
13 | eqidd 2731 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → V = V) | |
14 | 12, 13 | neleq12d 3049 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → ({𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V ↔ {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} ∉ V)) |
15 | 10, 14 | mpbird 256 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {cab 2707 ∉ wnel 3044 ∃wrex 3068 Vcvv 3472 {csn 4627 ⟨cop 4633 ↦ cmpt 5230 ⟶wf 6538 –1-1-onto→wf1o 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
This theorem is referenced by: fsetprcnexALT 46070 |
Copyright terms: Public domain | W3C validator |