Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelun Structured version   Visualization version   GIF version

Theorem nelun 32534
Description: Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Assertion
Ref Expression
nelun (𝐴 = (𝐵𝐶) → (¬ 𝑋𝐴 ↔ (¬ 𝑋𝐵 ∧ ¬ 𝑋𝐶)))

Proof of Theorem nelun
StepHypRef Expression
1 eleq2 2833 . . . 4 (𝐴 = (𝐵𝐶) → (𝑋𝐴𝑋 ∈ (𝐵𝐶)))
2 elun 4176 . . . 4 (𝑋 ∈ (𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶))
31, 2bitrdi 287 . . 3 (𝐴 = (𝐵𝐶) → (𝑋𝐴 ↔ (𝑋𝐵𝑋𝐶)))
43notbid 318 . 2 (𝐴 = (𝐵𝐶) → (¬ 𝑋𝐴 ↔ ¬ (𝑋𝐵𝑋𝐶)))
5 ioran 984 . 2 (¬ (𝑋𝐵𝑋𝐶) ↔ (¬ 𝑋𝐵 ∧ ¬ 𝑋𝐶))
64, 5bitrdi 287 1 (𝐴 = (𝐵𝐶) → (¬ 𝑋𝐴 ↔ (¬ 𝑋𝐵 ∧ ¬ 𝑋𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  cun 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981
This theorem is referenced by:  cycpmco2  33118  rprmnz  33505  rprmnunit  33506  rsprprmprmidlb  33508  rprmirredb  33517
  Copyright terms: Public domain W3C validator