Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelun Structured version   Visualization version   GIF version

Theorem nelun 30859
Description: Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Assertion
Ref Expression
nelun (𝐴 = (𝐵𝐶) → (¬ 𝑋𝐴 ↔ (¬ 𝑋𝐵 ∧ ¬ 𝑋𝐶)))

Proof of Theorem nelun
StepHypRef Expression
1 eleq2 2827 . . . 4 (𝐴 = (𝐵𝐶) → (𝑋𝐴𝑋 ∈ (𝐵𝐶)))
2 elun 4083 . . . 4 (𝑋 ∈ (𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶))
31, 2bitrdi 287 . . 3 (𝐴 = (𝐵𝐶) → (𝑋𝐴 ↔ (𝑋𝐵𝑋𝐶)))
43notbid 318 . 2 (𝐴 = (𝐵𝐶) → (¬ 𝑋𝐴 ↔ ¬ (𝑋𝐵𝑋𝐶)))
5 ioran 981 . 2 (¬ (𝑋𝐵𝑋𝐶) ↔ (¬ 𝑋𝐵 ∧ ¬ 𝑋𝐶))
64, 5bitrdi 287 1 (𝐴 = (𝐵𝐶) → (¬ 𝑋𝐴 ↔ (¬ 𝑋𝐵 ∧ ¬ 𝑋𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  cun 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892
This theorem is referenced by:  cycpmco2  31400
  Copyright terms: Public domain W3C validator