| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelun | Structured version Visualization version GIF version | ||
| Description: Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| Ref | Expression |
|---|---|
| nelun | ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2830 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ (𝐵 ∪ 𝐶))) | |
| 2 | elun 4153 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | |
| 3 | 1, 2 | bitrdi 287 | . . 3 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶))) |
| 4 | 3 | notbid 318 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ ¬ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶))) |
| 5 | ioran 986 | . 2 ⊢ (¬ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶)) | |
| 6 | 4, 5 | bitrdi 287 | 1 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-un 3956 |
| This theorem is referenced by: cycpmco2 33153 elrgspnlem4 33249 rprmnz 33548 rprmnunit 33549 rsprprmprmidlb 33551 rprmirredb 33560 |
| Copyright terms: Public domain | W3C validator |