Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nelun | Structured version Visualization version GIF version |
Description: Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
Ref | Expression |
---|---|
nelun | ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ (𝐵 ∪ 𝐶))) | |
2 | elun 4079 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∪ 𝐶) ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | |
3 | 1, 2 | bitrdi 286 | . . 3 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶))) |
4 | 3 | notbid 317 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ ¬ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶))) |
5 | ioran 980 | . 2 ⊢ (¬ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶) ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶)) | |
6 | 4, 5 | bitrdi 286 | 1 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (¬ 𝑋 ∈ 𝐴 ↔ (¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 |
This theorem is referenced by: cycpmco2 31302 |
Copyright terms: Public domain | W3C validator |