Step | Hyp | Ref
| Expression |
1 | | cycpmco2.d |
. . . . . . 7
β’ (π β π· β π) |
2 | | cycpmco2.c |
. . . . . . . 8
β’ π = (toCycβπ·) |
3 | | cycpmco2.s |
. . . . . . . 8
β’ π = (SymGrpβπ·) |
4 | | eqid 2733 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
5 | 2, 3, 4 | tocycf 32015 |
. . . . . . 7
β’ (π· β π β π:{π€ β Word π· β£ π€:dom π€β1-1βπ·}βΆ(Baseβπ)) |
6 | 1, 5 | syl 17 |
. . . . . 6
β’ (π β π:{π€ β Word π· β£ π€:dom π€β1-1βπ·}βΆ(Baseβπ)) |
7 | | cycpmco2.w |
. . . . . . 7
β’ (π β π β dom π) |
8 | 6 | fdmd 6680 |
. . . . . . 7
β’ (π β dom π = {π€ β Word π· β£ π€:dom π€β1-1βπ·}) |
9 | 7, 8 | eleqtrd 2836 |
. . . . . 6
β’ (π β π β {π€ β Word π· β£ π€:dom π€β1-1βπ·}) |
10 | 6, 9 | ffvelcdmd 7037 |
. . . . 5
β’ (π β (πβπ) β (Baseβπ)) |
11 | 3, 4 | symgbasf 19162 |
. . . . 5
β’ ((πβπ) β (Baseβπ) β (πβπ):π·βΆπ·) |
12 | 10, 11 | syl 17 |
. . . 4
β’ (π β (πβπ):π·βΆπ·) |
13 | 12 | ffnd 6670 |
. . 3
β’ (π β (πβπ) Fn π·) |
14 | | cycpmco2.i |
. . . . . . 7
β’ (π β πΌ β (π· β ran π)) |
15 | 14 | eldifad 3923 |
. . . . . 6
β’ (π β πΌ β π·) |
16 | | ssrab2 4038 |
. . . . . . . . . . 11
β’ {π€ β Word π· β£ π€:dom π€β1-1βπ·} β Word π· |
17 | 16, 9 | sselid 3943 |
. . . . . . . . . 10
β’ (π β π β Word π·) |
18 | | id 22 |
. . . . . . . . . . . . 13
β’ (π€ = π β π€ = π) |
19 | | dmeq 5860 |
. . . . . . . . . . . . 13
β’ (π€ = π β dom π€ = dom π) |
20 | | eqidd 2734 |
. . . . . . . . . . . . 13
β’ (π€ = π β π· = π·) |
21 | 18, 19, 20 | f1eq123d 6777 |
. . . . . . . . . . . 12
β’ (π€ = π β (π€:dom π€β1-1βπ· β π:dom πβ1-1βπ·)) |
22 | 21 | elrab3 3647 |
. . . . . . . . . . 11
β’ (π β Word π· β (π β {π€ β Word π· β£ π€:dom π€β1-1βπ·} β π:dom πβ1-1βπ·)) |
23 | 22 | biimpa 478 |
. . . . . . . . . 10
β’ ((π β Word π· β§ π β {π€ β Word π· β£ π€:dom π€β1-1βπ·}) β π:dom πβ1-1βπ·) |
24 | 17, 9, 23 | syl2anc 585 |
. . . . . . . . 9
β’ (π β π:dom πβ1-1βπ·) |
25 | | f1f 6739 |
. . . . . . . . 9
β’ (π:dom πβ1-1βπ· β π:dom πβΆπ·) |
26 | 24, 25 | syl 17 |
. . . . . . . 8
β’ (π β π:dom πβΆπ·) |
27 | 26 | frnd 6677 |
. . . . . . 7
β’ (π β ran π β π·) |
28 | | cycpmco2.j |
. . . . . . 7
β’ (π β π½ β ran π) |
29 | 27, 28 | sseldd 3946 |
. . . . . 6
β’ (π β π½ β π·) |
30 | 14 | eldifbd 3924 |
. . . . . . . 8
β’ (π β Β¬ πΌ β ran π) |
31 | | nelne2 3039 |
. . . . . . . 8
β’ ((π½ β ran π β§ Β¬ πΌ β ran π) β π½ β πΌ) |
32 | 28, 30, 31 | syl2anc 585 |
. . . . . . 7
β’ (π β π½ β πΌ) |
33 | 32 | necomd 2996 |
. . . . . 6
β’ (π β πΌ β π½) |
34 | 2, 1, 15, 29, 33, 3 | cycpm2cl 32018 |
. . . . 5
β’ (π β (πββ¨βπΌπ½ββ©) β (Baseβπ)) |
35 | 3, 4 | symgbasf 19162 |
. . . . 5
β’ ((πββ¨βπΌπ½ββ©) β (Baseβπ) β (πββ¨βπΌπ½ββ©):π·βΆπ·) |
36 | 34, 35 | syl 17 |
. . . 4
β’ (π β (πββ¨βπΌπ½ββ©):π·βΆπ·) |
37 | 36 | ffnd 6670 |
. . 3
β’ (π β (πββ¨βπΌπ½ββ©) Fn π·) |
38 | 36 | frnd 6677 |
. . 3
β’ (π β ran (πββ¨βπΌπ½ββ©) β π·) |
39 | | fnco 6619 |
. . 3
β’ (((πβπ) Fn π· β§ (πββ¨βπΌπ½ββ©) Fn π· β§ ran (πββ¨βπΌπ½ββ©) β π·) β ((πβπ) β (πββ¨βπΌπ½ββ©)) Fn π·) |
40 | 13, 37, 38, 39 | syl3anc 1372 |
. 2
β’ (π β ((πβπ) β (πββ¨βπΌπ½ββ©)) Fn π·) |
41 | | cycpmco2.1 |
. . . . . 6
β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) |
42 | 15 | s1cld 14497 |
. . . . . . 7
β’ (π β β¨βπΌββ© β Word π·) |
43 | | splcl 14646 |
. . . . . . 7
β’ ((π β Word π· β§ β¨βπΌββ© β Word π·) β (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) β Word π·) |
44 | 17, 42, 43 | syl2anc 585 |
. . . . . 6
β’ (π β (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) β Word π·) |
45 | 41, 44 | eqeltrid 2838 |
. . . . 5
β’ (π β π β Word π·) |
46 | | cycpmco2.e |
. . . . . 6
β’ πΈ = ((β‘πβπ½) + 1) |
47 | 2, 3, 1, 7, 14, 28, 46, 41 | cycpmco2f1 32022 |
. . . . 5
β’ (π β π:dom πβ1-1βπ·) |
48 | 2, 1, 45, 47, 3 | cycpmcl 32014 |
. . . 4
β’ (π β (πβπ) β (Baseβπ)) |
49 | 3, 4 | symgbasf 19162 |
. . . 4
β’ ((πβπ) β (Baseβπ) β (πβπ):π·βΆπ·) |
50 | 48, 49 | syl 17 |
. . 3
β’ (π β (πβπ):π·βΆπ·) |
51 | 50 | ffnd 6670 |
. 2
β’ (π β (πβπ) Fn π·) |
52 | | fvco3 6941 |
. . . 4
β’ (((πββ¨βπΌπ½ββ©):π·βΆπ· β§ π β π·) β (((πβπ) β (πββ¨βπΌπ½ββ©))βπ) = ((πβπ)β((πββ¨βπΌπ½ββ©)βπ))) |
53 | 36, 52 | sylan 581 |
. . 3
β’ ((π β§ π β π·) β (((πβπ) β (πββ¨βπΌπ½ββ©))βπ) = ((πβπ)β((πββ¨βπΌπ½ββ©)βπ))) |
54 | 2, 1, 15, 29, 33, 3 | cyc2fv2 32020 |
. . . . . . . . . 10
β’ (π β ((πββ¨βπΌπ½ββ©)βπ½) = πΌ) |
55 | 54 | fveq2d 6847 |
. . . . . . . . 9
β’ (π β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ½)) = ((πβπ)βπΌ)) |
56 | 2, 3, 1, 7, 14, 28, 46, 41 | cycpmco2lem2 32025 |
. . . . . . . . . 10
β’ (π β (πβπΈ) = πΌ) |
57 | | f1cnv 6809 |
. . . . . . . . . . . . . . . 16
β’ (π:dom πβ1-1βπ· β β‘π:ran πβ1-1-ontoβdom
π) |
58 | | f1of 6785 |
. . . . . . . . . . . . . . . 16
β’ (β‘π:ran πβ1-1-ontoβdom
π β β‘π:ran πβΆdom π) |
59 | 24, 57, 58 | 3syl 18 |
. . . . . . . . . . . . . . 15
β’ (π β β‘π:ran πβΆdom π) |
60 | 59, 28 | ffvelcdmd 7037 |
. . . . . . . . . . . . . 14
β’ (π β (β‘πβπ½) β dom π) |
61 | | wrddm 14415 |
. . . . . . . . . . . . . . 15
β’ (π β Word π· β dom π = (0..^(β―βπ))) |
62 | 17, 61 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β dom π = (0..^(β―βπ))) |
63 | 60, 62 | eleqtrd 2836 |
. . . . . . . . . . . . 13
β’ (π β (β‘πβπ½) β (0..^(β―βπ))) |
64 | | lencl 14427 |
. . . . . . . . . . . . . . . . 17
β’ (π β Word π· β (β―βπ) β
β0) |
65 | 17, 64 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β (β―βπ) β
β0) |
66 | 65 | nn0cnd 12480 |
. . . . . . . . . . . . . . 15
β’ (π β (β―βπ) β
β) |
67 | | 1cnd 11155 |
. . . . . . . . . . . . . . 15
β’ (π β 1 β
β) |
68 | | ovexd 7393 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β ((β‘πβπ½) + 1) β V) |
69 | 46, 68 | eqeltrid 2838 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β πΈ β V) |
70 | | splval 14645 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β dom π β§ (πΈ β V β§ πΈ β V β§ β¨βπΌββ© β Word π·)) β (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) = (((π prefix πΈ) ++ β¨βπΌββ©) ++ (π substr β¨πΈ, (β―βπ)β©))) |
71 | 7, 69, 69, 42, 70 | syl13anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) = (((π prefix πΈ) ++ β¨βπΌββ©) ++ (π substr β¨πΈ, (β―βπ)β©))) |
72 | 41, 71 | eqtrid 2785 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β π = (((π prefix πΈ) ++ β¨βπΌββ©) ++ (π substr β¨πΈ, (β―βπ)β©))) |
73 | 72 | fveq2d 6847 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (β―βπ) = (β―β(((π prefix πΈ) ++ β¨βπΌββ©) ++ (π substr β¨πΈ, (β―βπ)β©)))) |
74 | | pfxcl 14571 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β Word π· β (π prefix πΈ) β Word π·) |
75 | 17, 74 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (π prefix πΈ) β Word π·) |
76 | | ccatcl 14468 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π prefix πΈ) β Word π· β§ β¨βπΌββ© β Word π·) β ((π prefix πΈ) ++ β¨βπΌββ©) β Word π·) |
77 | 75, 42, 76 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β ((π prefix πΈ) ++ β¨βπΌββ©) β Word π·) |
78 | | swrdcl 14539 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β Word π· β (π substr β¨πΈ, (β―βπ)β©) β Word π·) |
79 | 17, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (π substr β¨πΈ, (β―βπ)β©) β Word π·) |
80 | | ccatlen 14469 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π prefix πΈ) ++ β¨βπΌββ©) β Word π· β§ (π substr β¨πΈ, (β―βπ)β©) β Word π·) β (β―β(((π prefix πΈ) ++ β¨βπΌββ©) ++ (π substr β¨πΈ, (β―βπ)β©))) = ((β―β((π prefix πΈ) ++ β¨βπΌββ©)) + (β―β(π substr β¨πΈ, (β―βπ)β©)))) |
81 | 77, 79, 80 | syl2anc 585 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (β―β(((π prefix πΈ) ++ β¨βπΌββ©) ++ (π substr β¨πΈ, (β―βπ)β©))) = ((β―β((π prefix πΈ) ++ β¨βπΌββ©)) + (β―β(π substr β¨πΈ, (β―βπ)β©)))) |
82 | | ccatws1len 14514 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π prefix πΈ) β Word π· β (β―β((π prefix πΈ) ++ β¨βπΌββ©)) = ((β―β(π prefix πΈ)) + 1)) |
83 | 17, 74, 82 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (β―β((π prefix πΈ) ++ β¨βπΌββ©)) = ((β―β(π prefix πΈ)) + 1)) |
84 | | fzofzp1 13675 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((β‘πβπ½) β (0..^(β―βπ)) β ((β‘πβπ½) + 1) β (0...(β―βπ))) |
85 | 63, 84 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β ((β‘πβπ½) + 1) β (0...(β―βπ))) |
86 | 46, 85 | eqeltrid 2838 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β πΈ β (0...(β―βπ))) |
87 | | pfxlen 14577 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β Word π· β§ πΈ β (0...(β―βπ))) β (β―β(π prefix πΈ)) = πΈ) |
88 | 17, 86, 87 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (β―β(π prefix πΈ)) = πΈ) |
89 | 88 | oveq1d 7373 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β ((β―β(π prefix πΈ)) + 1) = (πΈ + 1)) |
90 | 83, 89 | eqtrd 2773 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (β―β((π prefix πΈ) ++ β¨βπΌββ©)) = (πΈ + 1)) |
91 | | nn0fz0 13545 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((β―βπ)
β β0 β (β―βπ) β (0...(β―βπ))) |
92 | 65, 91 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (β―βπ) β
(0...(β―βπ))) |
93 | | swrdlen 14541 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β Word π· β§ πΈ β (0...(β―βπ)) β§ (β―βπ) β
(0...(β―βπ)))
β (β―β(π
substr β¨πΈ,
(β―βπ)β©)) =
((β―βπ) β
πΈ)) |
94 | 17, 86, 92, 93 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (β―β(π substr β¨πΈ, (β―βπ)β©)) = ((β―βπ) β πΈ)) |
95 | 90, 94 | oveq12d 7376 |
. . . . . . . . . . . . . . . . . 18
β’ (π β ((β―β((π prefix πΈ) ++ β¨βπΌββ©)) + (β―β(π substr β¨πΈ, (β―βπ)β©))) = ((πΈ + 1) + ((β―βπ) β πΈ))) |
96 | 73, 81, 95 | 3eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
β’ (π β (β―βπ) = ((πΈ + 1) + ((β―βπ) β πΈ))) |
97 | | fz0ssnn0 13542 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(0...(β―βπ)) β
β0 |
98 | 97, 86 | sselid 3943 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β πΈ β
β0) |
99 | 98 | nn0zd 12530 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β πΈ β β€) |
100 | 99 | peano2zd 12615 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (πΈ + 1) β β€) |
101 | 100 | zcnd 12613 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΈ + 1) β β) |
102 | 98 | nn0cnd 12480 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΈ β β) |
103 | 101, 66, 102 | addsubassd 11537 |
. . . . . . . . . . . . . . . . 17
β’ (π β (((πΈ + 1) + (β―βπ)) β πΈ) = ((πΈ + 1) + ((β―βπ) β πΈ))) |
104 | 102, 67, 66 | addassd 11182 |
. . . . . . . . . . . . . . . . . 18
β’ (π β ((πΈ + 1) + (β―βπ)) = (πΈ + (1 + (β―βπ)))) |
105 | 104 | oveq1d 7373 |
. . . . . . . . . . . . . . . . 17
β’ (π β (((πΈ + 1) + (β―βπ)) β πΈ) = ((πΈ + (1 + (β―βπ))) β πΈ)) |
106 | 96, 103, 105 | 3eqtr2d 2779 |
. . . . . . . . . . . . . . . 16
β’ (π β (β―βπ) = ((πΈ + (1 + (β―βπ))) β πΈ)) |
107 | 67, 66 | addcld 11179 |
. . . . . . . . . . . . . . . . 17
β’ (π β (1 + (β―βπ)) β
β) |
108 | 102, 107 | pncan2d 11519 |
. . . . . . . . . . . . . . . 16
β’ (π β ((πΈ + (1 + (β―βπ))) β πΈ) = (1 + (β―βπ))) |
109 | 67, 66 | addcomd 11362 |
. . . . . . . . . . . . . . . 16
β’ (π β (1 + (β―βπ)) = ((β―βπ) + 1)) |
110 | 106, 108,
109 | 3eqtrd 2777 |
. . . . . . . . . . . . . . 15
β’ (π β (β―βπ) = ((β―βπ) + 1)) |
111 | 66, 67, 110 | mvrraddd 11572 |
. . . . . . . . . . . . . 14
β’ (π β ((β―βπ) β 1) =
(β―βπ)) |
112 | 111 | oveq2d 7374 |
. . . . . . . . . . . . 13
β’ (π β (0..^((β―βπ) β 1)) =
(0..^(β―βπ))) |
113 | 63, 112 | eleqtrrd 2837 |
. . . . . . . . . . . 12
β’ (π β (β‘πβπ½) β (0..^((β―βπ) β 1))) |
114 | 2, 1, 45, 47, 113 | cycpmfv1 32011 |
. . . . . . . . . . 11
β’ (π β ((πβπ)β(πβ(β‘πβπ½))) = (πβ((β‘πβπ½) + 1))) |
115 | 46 | fveq2i 6846 |
. . . . . . . . . . 11
β’ (πβπΈ) = (πβ((β‘πβπ½) + 1)) |
116 | 114, 115 | eqtr4di 2791 |
. . . . . . . . . 10
β’ (π β ((πβπ)β(πβ(β‘πβπ½))) = (πβπΈ)) |
117 | 2, 1, 17, 24, 15, 30 | cycpmfv3 32013 |
. . . . . . . . . 10
β’ (π β ((πβπ)βπΌ) = πΌ) |
118 | 56, 116, 117 | 3eqtr4d 2783 |
. . . . . . . . 9
β’ (π β ((πβπ)β(πβ(β‘πβπ½))) = ((πβπ)βπΌ)) |
119 | 72 | fveq1d 6845 |
. . . . . . . . . . . 12
β’ (π β (πβ(β‘πβπ½)) = ((((π prefix πΈ) ++ β¨βπΌββ©) ++ (π substr β¨πΈ, (β―βπ)β©))β(β‘πβπ½))) |
120 | | fzossfzop1 13656 |
. . . . . . . . . . . . . . . 16
β’ (πΈ β β0
β (0..^πΈ) β
(0..^(πΈ +
1))) |
121 | 98, 120 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β (0..^πΈ) β (0..^(πΈ + 1))) |
122 | | elfzonn0 13623 |
. . . . . . . . . . . . . . . . 17
β’ ((β‘πβπ½) β (0..^(β―βπ)) β (β‘πβπ½) β
β0) |
123 | | fzonn0p1 13655 |
. . . . . . . . . . . . . . . . 17
β’ ((β‘πβπ½) β β0 β (β‘πβπ½) β (0..^((β‘πβπ½) + 1))) |
124 | 63, 122, 123 | 3syl 18 |
. . . . . . . . . . . . . . . 16
β’ (π β (β‘πβπ½) β (0..^((β‘πβπ½) + 1))) |
125 | 46 | oveq2i 7369 |
. . . . . . . . . . . . . . . 16
β’
(0..^πΈ) =
(0..^((β‘πβπ½) + 1)) |
126 | 124, 125 | eleqtrrdi 2845 |
. . . . . . . . . . . . . . 15
β’ (π β (β‘πβπ½) β (0..^πΈ)) |
127 | 121, 126 | sseldd 3946 |
. . . . . . . . . . . . . 14
β’ (π β (β‘πβπ½) β (0..^(πΈ + 1))) |
128 | 90 | oveq2d 7374 |
. . . . . . . . . . . . . 14
β’ (π β
(0..^(β―β((π
prefix πΈ) ++
β¨βπΌββ©))) = (0..^(πΈ + 1))) |
129 | 127, 128 | eleqtrrd 2837 |
. . . . . . . . . . . . 13
β’ (π β (β‘πβπ½) β (0..^(β―β((π prefix πΈ) ++ β¨βπΌββ©)))) |
130 | | ccatval1 14471 |
. . . . . . . . . . . . 13
β’ ((((π prefix πΈ) ++ β¨βπΌββ©) β Word π· β§ (π substr β¨πΈ, (β―βπ)β©) β Word π· β§ (β‘πβπ½) β (0..^(β―β((π prefix πΈ) ++ β¨βπΌββ©)))) β ((((π prefix πΈ) ++ β¨βπΌββ©) ++ (π substr β¨πΈ, (β―βπ)β©))β(β‘πβπ½)) = (((π prefix πΈ) ++ β¨βπΌββ©)β(β‘πβπ½))) |
131 | 77, 79, 129, 130 | syl3anc 1372 |
. . . . . . . . . . . 12
β’ (π β ((((π prefix πΈ) ++ β¨βπΌββ©) ++ (π substr β¨πΈ, (β―βπ)β©))β(β‘πβπ½)) = (((π prefix πΈ) ++ β¨βπΌββ©)β(β‘πβπ½))) |
132 | 88 | oveq2d 7374 |
. . . . . . . . . . . . . 14
β’ (π β (0..^(β―β(π prefix πΈ))) = (0..^πΈ)) |
133 | 126, 132 | eleqtrrd 2837 |
. . . . . . . . . . . . 13
β’ (π β (β‘πβπ½) β (0..^(β―β(π prefix πΈ)))) |
134 | | ccatval1 14471 |
. . . . . . . . . . . . 13
β’ (((π prefix πΈ) β Word π· β§ β¨βπΌββ© β Word π· β§ (β‘πβπ½) β (0..^(β―β(π prefix πΈ)))) β (((π prefix πΈ) ++ β¨βπΌββ©)β(β‘πβπ½)) = ((π prefix πΈ)β(β‘πβπ½))) |
135 | 75, 42, 133, 134 | syl3anc 1372 |
. . . . . . . . . . . 12
β’ (π β (((π prefix πΈ) ++ β¨βπΌββ©)β(β‘πβπ½)) = ((π prefix πΈ)β(β‘πβπ½))) |
136 | 119, 131,
135 | 3eqtrd 2777 |
. . . . . . . . . . 11
β’ (π β (πβ(β‘πβπ½)) = ((π prefix πΈ)β(β‘πβπ½))) |
137 | | pfxfv 14576 |
. . . . . . . . . . . 12
β’ ((π β Word π· β§ πΈ β (0...(β―βπ)) β§ (β‘πβπ½) β (0..^πΈ)) β ((π prefix πΈ)β(β‘πβπ½)) = (πβ(β‘πβπ½))) |
138 | 17, 86, 126, 137 | syl3anc 1372 |
. . . . . . . . . . 11
β’ (π β ((π prefix πΈ)β(β‘πβπ½)) = (πβ(β‘πβπ½))) |
139 | | f1f1orn 6796 |
. . . . . . . . . . . . 13
β’ (π:dom πβ1-1βπ· β π:dom πβ1-1-ontoβran
π) |
140 | 24, 139 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π:dom πβ1-1-ontoβran
π) |
141 | | f1ocnvfv2 7224 |
. . . . . . . . . . . 12
β’ ((π:dom πβ1-1-ontoβran
π β§ π½ β ran π) β (πβ(β‘πβπ½)) = π½) |
142 | 140, 28, 141 | syl2anc 585 |
. . . . . . . . . . 11
β’ (π β (πβ(β‘πβπ½)) = π½) |
143 | 136, 138,
142 | 3eqtrd 2777 |
. . . . . . . . . 10
β’ (π β (πβ(β‘πβπ½)) = π½) |
144 | 143 | fveq2d 6847 |
. . . . . . . . 9
β’ (π β ((πβπ)β(πβ(β‘πβπ½))) = ((πβπ)βπ½)) |
145 | 55, 118, 144 | 3eqtr2d 2779 |
. . . . . . . 8
β’ (π β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ½)) = ((πβπ)βπ½)) |
146 | 145 | ad2antrr 725 |
. . . . . . 7
β’ (((π β§ π β ran π) β§ π = π½) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ½)) = ((πβπ)βπ½)) |
147 | | simpr 486 |
. . . . . . . . 9
β’ (((π β§ π β ran π) β§ π = π½) β π = π½) |
148 | 147 | fveq2d 6847 |
. . . . . . . 8
β’ (((π β§ π β ran π) β§ π = π½) β ((πββ¨βπΌπ½ββ©)βπ) = ((πββ¨βπΌπ½ββ©)βπ½)) |
149 | 148 | fveq2d 6847 |
. . . . . . 7
β’ (((π β§ π β ran π) β§ π = π½) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)β((πββ¨βπΌπ½ββ©)βπ½))) |
150 | 147 | fveq2d 6847 |
. . . . . . 7
β’ (((π β§ π β ran π) β§ π = π½) β ((πβπ)βπ) = ((πβπ)βπ½)) |
151 | 146, 149,
150 | 3eqtr4d 2783 |
. . . . . 6
β’ (((π β§ π β ran π) β§ π = π½) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
152 | 1 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ π β ran π) β§ π β π½) β π· β π) |
153 | 15, 29 | s2cld 14766 |
. . . . . . . . . 10
β’ (π β β¨βπΌπ½ββ© β Word π·) |
154 | 153 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ π β ran π) β§ π β π½) β β¨βπΌπ½ββ© β Word π·) |
155 | 15, 29, 33 | s2f1 31850 |
. . . . . . . . . 10
β’ (π β β¨βπΌπ½ββ©:dom β¨βπΌπ½ββ©β1-1βπ·) |
156 | 155 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ π β ran π) β§ π β π½) β β¨βπΌπ½ββ©:dom β¨βπΌπ½ββ©β1-1βπ·) |
157 | 27 | sselda 3945 |
. . . . . . . . . 10
β’ ((π β§ π β ran π) β π β π·) |
158 | 157 | adantr 482 |
. . . . . . . . 9
β’ (((π β§ π β ran π) β§ π β π½) β π β π·) |
159 | | simpr 486 |
. . . . . . . . . . . . 13
β’ ((π β§ π β ran π) β π β ran π) |
160 | 30 | adantr 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π β ran π) β Β¬ πΌ β ran π) |
161 | | nelne2 3039 |
. . . . . . . . . . . . 13
β’ ((π β ran π β§ Β¬ πΌ β ran π) β π β πΌ) |
162 | 159, 160,
161 | syl2anc 585 |
. . . . . . . . . . . 12
β’ ((π β§ π β ran π) β π β πΌ) |
163 | 162 | adantr 482 |
. . . . . . . . . . 11
β’ (((π β§ π β ran π) β§ π β π½) β π β πΌ) |
164 | | simpr 486 |
. . . . . . . . . . 11
β’ (((π β§ π β ran π) β§ π β π½) β π β π½) |
165 | 163, 164 | nelprd 4618 |
. . . . . . . . . 10
β’ (((π β§ π β ran π) β§ π β π½) β Β¬ π β {πΌ, π½}) |
166 | 15, 29 | s2rn 31849 |
. . . . . . . . . . . . 13
β’ (π β ran β¨βπΌπ½ββ© = {πΌ, π½}) |
167 | 166 | eleq2d 2820 |
. . . . . . . . . . . 12
β’ (π β (π β ran β¨βπΌπ½ββ© β π β {πΌ, π½})) |
168 | 167 | notbid 318 |
. . . . . . . . . . 11
β’ (π β (Β¬ π β ran β¨βπΌπ½ββ© β Β¬ π β {πΌ, π½})) |
169 | 168 | ad2antrr 725 |
. . . . . . . . . 10
β’ (((π β§ π β ran π) β§ π β π½) β (Β¬ π β ran β¨βπΌπ½ββ© β Β¬ π β {πΌ, π½})) |
170 | 165, 169 | mpbird 257 |
. . . . . . . . 9
β’ (((π β§ π β ran π) β§ π β π½) β Β¬ π β ran β¨βπΌπ½ββ©) |
171 | 2, 152, 154, 156, 158, 170 | cycpmfv3 32013 |
. . . . . . . 8
β’ (((π β§ π β ran π) β§ π β π½) β ((πββ¨βπΌπ½ββ©)βπ) = π) |
172 | 171 | fveq2d 6847 |
. . . . . . 7
β’ (((π β§ π β ran π) β§ π β π½) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
173 | 1 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (0..^πΈ)) β π· β π) |
174 | 7 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (0..^πΈ)) β π β dom π) |
175 | 14 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (0..^πΈ)) β πΌ β (π· β ran π)) |
176 | 28 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (0..^πΈ)) β π½ β ran π) |
177 | | simpllr 775 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (0..^πΈ)) β π β ran π) |
178 | | simplr 768 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (0..^πΈ)) β π β π½) |
179 | | simpr 486 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (0..^πΈ)) β (β‘πβπ) β (0..^πΈ)) |
180 | 2, 3, 173, 174, 175, 176, 46, 41, 177, 178, 179 | cycpmco2lem7 32030 |
. . . . . . . 8
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (0..^πΈ)) β ((πβπ)βπ) = ((πβπ)βπ)) |
181 | 1 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β π· β π) |
182 | 7 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β π β dom π) |
183 | 14 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β πΌ β (π· β ran π)) |
184 | 28 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β π½ β ran π) |
185 | | simpllr 775 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β π β ran π) |
186 | 162 | ad2antrr 725 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β π β πΌ) |
187 | | simpr 486 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β (β‘πβπ) β (πΈ..^((β―βπ) β 1))) |
188 | 2, 3, 181, 182, 183, 184, 46, 41, 185, 186, 187 | cycpmco2lem6 32029 |
. . . . . . . 8
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β ((πβπ)βπ) = ((πβπ)βπ)) |
189 | 1 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) = ((β―βπ) β 1)) β π· β π) |
190 | 7 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) = ((β―βπ) β 1)) β π β dom π) |
191 | 14 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) = ((β―βπ) β 1)) β πΌ β (π· β ran π)) |
192 | 28 | ad3antrrr 729 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) = ((β―βπ) β 1)) β π½ β ran π) |
193 | | simpllr 775 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) = ((β―βπ) β 1)) β π β ran π) |
194 | | simpr 486 |
. . . . . . . . 9
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) = ((β―βπ) β 1)) β (β‘πβπ) = ((β―βπ) β 1)) |
195 | 2, 3, 189, 190, 191, 192, 46, 41, 193, 194 | cycpmco2lem5 32028 |
. . . . . . . 8
β’ ((((π β§ π β ran π) β§ π β π½) β§ (β‘πβπ) = ((β―βπ) β 1)) β ((πβπ)βπ) = ((πβπ)βπ)) |
196 | | f1f1orn 6796 |
. . . . . . . . . . . . . . . 16
β’ (π:dom πβ1-1βπ· β π:dom πβ1-1-ontoβran
π) |
197 | 47, 196 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β π:dom πβ1-1-ontoβran
π) |
198 | | ssun1 4133 |
. . . . . . . . . . . . . . . . 17
β’ ran π β (ran π βͺ {πΌ}) |
199 | 2, 3, 1, 7, 14, 28, 46, 41 | cycpmco2rn 32023 |
. . . . . . . . . . . . . . . . 17
β’ (π β ran π = (ran π βͺ {πΌ})) |
200 | 198, 199 | sseqtrrid 3998 |
. . . . . . . . . . . . . . . 16
β’ (π β ran π β ran π) |
201 | 200 | sselda 3945 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β ran π) β π β ran π) |
202 | | f1ocnvdm 7232 |
. . . . . . . . . . . . . . 15
β’ ((π:dom πβ1-1-ontoβran
π β§ π β ran π) β (β‘πβπ) β dom π) |
203 | 197, 201,
202 | syl2an2r 684 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β ran π) β (β‘πβπ) β dom π) |
204 | | wrddm 14415 |
. . . . . . . . . . . . . . . 16
β’ (π β Word π· β dom π = (0..^(β―βπ))) |
205 | 45, 204 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β dom π = (0..^(β―βπ))) |
206 | 205 | adantr 482 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β ran π) β dom π = (0..^(β―βπ))) |
207 | 203, 206 | eleqtrd 2836 |
. . . . . . . . . . . . 13
β’ ((π β§ π β ran π) β (β‘πβπ) β (0..^(β―βπ))) |
208 | 65 | nn0zd 12530 |
. . . . . . . . . . . . . . . . 17
β’ (π β (β―βπ) β
β€) |
209 | 208 | peano2zd 12615 |
. . . . . . . . . . . . . . . 16
β’ (π β ((β―βπ) + 1) β
β€) |
210 | 110, 209 | eqeltrd 2834 |
. . . . . . . . . . . . . . 15
β’ (π β (β―βπ) β
β€) |
211 | | fzoval 13579 |
. . . . . . . . . . . . . . 15
β’
((β―βπ)
β β€ β (0..^(β―βπ)) = (0...((β―βπ) β 1))) |
212 | 210, 211 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (0..^(β―βπ)) = (0...((β―βπ) β 1))) |
213 | 212 | adantr 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π β ran π) β (0..^(β―βπ)) = (0...((β―βπ) β 1))) |
214 | 207, 213 | eleqtrd 2836 |
. . . . . . . . . . . 12
β’ ((π β§ π β ran π) β (β‘πβπ) β (0...((β―βπ) β 1))) |
215 | | elfzr 13691 |
. . . . . . . . . . . 12
β’ ((β‘πβπ) β (0...((β―βπ) β 1)) β ((β‘πβπ) β (0..^((β―βπ) β 1)) β¨ (β‘πβπ) = ((β―βπ) β 1))) |
216 | 214, 215 | syl 17 |
. . . . . . . . . . 11
β’ ((π β§ π β ran π) β ((β‘πβπ) β (0..^((β―βπ) β 1)) β¨ (β‘πβπ) = ((β―βπ) β 1))) |
217 | | simpr 486 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β ran π) β§ (β‘πβπ) β (0..^((β―βπ) β 1))) β (β‘πβπ) β (0..^((β―βπ) β 1))) |
218 | 99 | ad2antrr 725 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β ran π) β§ (β‘πβπ) β (0..^((β―βπ) β 1))) β πΈ β
β€) |
219 | | fzospliti 13610 |
. . . . . . . . . . . . . 14
β’ (((β‘πβπ) β (0..^((β―βπ) β 1)) β§ πΈ β β€) β ((β‘πβπ) β (0..^πΈ) β¨ (β‘πβπ) β (πΈ..^((β―βπ) β 1)))) |
220 | 217, 218,
219 | syl2anc 585 |
. . . . . . . . . . . . 13
β’ (((π β§ π β ran π) β§ (β‘πβπ) β (0..^((β―βπ) β 1))) β ((β‘πβπ) β (0..^πΈ) β¨ (β‘πβπ) β (πΈ..^((β―βπ) β 1)))) |
221 | 220 | ex 414 |
. . . . . . . . . . . 12
β’ ((π β§ π β ran π) β ((β‘πβπ) β (0..^((β―βπ) β 1)) β ((β‘πβπ) β (0..^πΈ) β¨ (β‘πβπ) β (πΈ..^((β―βπ) β 1))))) |
222 | 221 | orim1d 965 |
. . . . . . . . . . 11
β’ ((π β§ π β ran π) β (((β‘πβπ) β (0..^((β―βπ) β 1)) β¨ (β‘πβπ) = ((β―βπ) β 1)) β (((β‘πβπ) β (0..^πΈ) β¨ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β¨ (β‘πβπ) = ((β―βπ) β 1)))) |
223 | 216, 222 | mpd 15 |
. . . . . . . . . 10
β’ ((π β§ π β ran π) β (((β‘πβπ) β (0..^πΈ) β¨ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β¨ (β‘πβπ) = ((β―βπ) β 1))) |
224 | | df-3or 1089 |
. . . . . . . . . 10
β’ (((β‘πβπ) β (0..^πΈ) β¨ (β‘πβπ) β (πΈ..^((β―βπ) β 1)) β¨ (β‘πβπ) = ((β―βπ) β 1)) β (((β‘πβπ) β (0..^πΈ) β¨ (β‘πβπ) β (πΈ..^((β―βπ) β 1))) β¨ (β‘πβπ) = ((β―βπ) β 1))) |
225 | 223, 224 | sylibr 233 |
. . . . . . . . 9
β’ ((π β§ π β ran π) β ((β‘πβπ) β (0..^πΈ) β¨ (β‘πβπ) β (πΈ..^((β―βπ) β 1)) β¨ (β‘πβπ) = ((β―βπ) β 1))) |
226 | 225 | adantr 482 |
. . . . . . . 8
β’ (((π β§ π β ran π) β§ π β π½) β ((β‘πβπ) β (0..^πΈ) β¨ (β‘πβπ) β (πΈ..^((β―βπ) β 1)) β¨ (β‘πβπ) = ((β―βπ) β 1))) |
227 | 180, 188,
195, 226 | mpjao3dan 1432 |
. . . . . . 7
β’ (((π β§ π β ran π) β§ π β π½) β ((πβπ)βπ) = ((πβπ)βπ)) |
228 | 172, 227 | eqtr4d 2776 |
. . . . . 6
β’ (((π β§ π β ran π) β§ π β π½) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
229 | 151, 228 | pm2.61dane 3029 |
. . . . 5
β’ ((π β§ π β ran π) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
230 | 229 | adantlr 714 |
. . . 4
β’ (((π β§ π β π·) β§ π β ran π) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
231 | 2, 3, 1, 7, 14, 28, 46, 41 | cycpmco2lem4 32027 |
. . . . . . . 8
β’ (π β ((πβπ)β((πββ¨βπΌπ½ββ©)βπΌ)) = ((πβπ)βπΌ)) |
232 | 231 | ad2antrr 725 |
. . . . . . 7
β’ (((π β§ π β (π· β ran π)) β§ π = πΌ) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπΌ)) = ((πβπ)βπΌ)) |
233 | | simpr 486 |
. . . . . . . . 9
β’ (((π β§ π β (π· β ran π)) β§ π = πΌ) β π = πΌ) |
234 | 233 | fveq2d 6847 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π = πΌ) β ((πββ¨βπΌπ½ββ©)βπ) = ((πββ¨βπΌπ½ββ©)βπΌ)) |
235 | 234 | fveq2d 6847 |
. . . . . . 7
β’ (((π β§ π β (π· β ran π)) β§ π = πΌ) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)β((πββ¨βπΌπ½ββ©)βπΌ))) |
236 | 233 | fveq2d 6847 |
. . . . . . 7
β’ (((π β§ π β (π· β ran π)) β§ π = πΌ) β ((πβπ)βπ) = ((πβπ)βπΌ)) |
237 | 232, 235,
236 | 3eqtr4d 2783 |
. . . . . 6
β’ (((π β§ π β (π· β ran π)) β§ π = πΌ) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
238 | 1 | ad2antrr 725 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β π· β π) |
239 | 17 | ad2antrr 725 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β π β Word π·) |
240 | 24 | ad2antrr 725 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β π:dom πβ1-1βπ·) |
241 | | simplr 768 |
. . . . . . . . 9
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β π β (π· β ran π)) |
242 | 241 | eldifad 3923 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β π β π·) |
243 | 241 | eldifbd 3924 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β Β¬ π β ran π) |
244 | 2, 238, 239, 240, 242, 243 | cycpmfv3 32013 |
. . . . . . 7
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β ((πβπ)βπ) = π) |
245 | 153 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β β¨βπΌπ½ββ© β Word π·) |
246 | 155 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β β¨βπΌπ½ββ©:dom β¨βπΌπ½ββ©β1-1βπ·) |
247 | | simpr 486 |
. . . . . . . . . . 11
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β π β πΌ) |
248 | | eldifn 4088 |
. . . . . . . . . . . . . 14
β’ (π β (π· β ran π) β Β¬ π β ran π) |
249 | | nelne2 3039 |
. . . . . . . . . . . . . 14
β’ ((π½ β ran π β§ Β¬ π β ran π) β π½ β π) |
250 | 28, 248, 249 | syl2an 597 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (π· β ran π)) β π½ β π) |
251 | 250 | necomd 2996 |
. . . . . . . . . . . 12
β’ ((π β§ π β (π· β ran π)) β π β π½) |
252 | 251 | adantr 482 |
. . . . . . . . . . 11
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β π β π½) |
253 | 247, 252 | nelprd 4618 |
. . . . . . . . . 10
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β Β¬ π β {πΌ, π½}) |
254 | 168 | ad2antrr 725 |
. . . . . . . . . 10
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β (Β¬ π β ran β¨βπΌπ½ββ© β Β¬ π β {πΌ, π½})) |
255 | 253, 254 | mpbird 257 |
. . . . . . . . 9
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β Β¬ π β ran β¨βπΌπ½ββ©) |
256 | 2, 238, 245, 246, 242, 255 | cycpmfv3 32013 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β ((πββ¨βπΌπ½ββ©)βπ) = π) |
257 | 256 | fveq2d 6847 |
. . . . . . 7
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
258 | 45 | ad2antrr 725 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β π β Word π·) |
259 | 47 | ad2antrr 725 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β π:dom πβ1-1βπ·) |
260 | 199 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β ran π = (ran π βͺ {πΌ})) |
261 | | nelsn 4627 |
. . . . . . . . . 10
β’ (π β πΌ β Β¬ π β {πΌ}) |
262 | 261 | adantl 483 |
. . . . . . . . 9
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β Β¬ π β {πΌ}) |
263 | | nelun 31483 |
. . . . . . . . . 10
β’ (ran
π = (ran π βͺ {πΌ}) β (Β¬ π β ran π β (Β¬ π β ran π β§ Β¬ π β {πΌ}))) |
264 | 263 | biimpar 479 |
. . . . . . . . 9
β’ ((ran
π = (ran π βͺ {πΌ}) β§ (Β¬ π β ran π β§ Β¬ π β {πΌ})) β Β¬ π β ran π) |
265 | 260, 243,
262, 264 | syl12anc 836 |
. . . . . . . 8
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β Β¬ π β ran π) |
266 | 2, 238, 258, 259, 242, 265 | cycpmfv3 32013 |
. . . . . . 7
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β ((πβπ)βπ) = π) |
267 | 244, 257,
266 | 3eqtr4d 2783 |
. . . . . 6
β’ (((π β§ π β (π· β ran π)) β§ π β πΌ) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
268 | 237, 267 | pm2.61dane 3029 |
. . . . 5
β’ ((π β§ π β (π· β ran π)) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
269 | 268 | adantlr 714 |
. . . 4
β’ (((π β§ π β π·) β§ π β (π· β ran π)) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
270 | | undif 4442 |
. . . . . . . 8
β’ (ran
π β π· β (ran π βͺ (π· β ran π)) = π·) |
271 | 27, 270 | sylib 217 |
. . . . . . 7
β’ (π β (ran π βͺ (π· β ran π)) = π·) |
272 | 271 | eleq2d 2820 |
. . . . . 6
β’ (π β (π β (ran π βͺ (π· β ran π)) β π β π·)) |
273 | | elun 4109 |
. . . . . 6
β’ (π β (ran π βͺ (π· β ran π)) β (π β ran π β¨ π β (π· β ran π))) |
274 | 272, 273 | bitr3di 286 |
. . . . 5
β’ (π β (π β π· β (π β ran π β¨ π β (π· β ran π)))) |
275 | 274 | biimpa 478 |
. . . 4
β’ ((π β§ π β π·) β (π β ran π β¨ π β (π· β ran π))) |
276 | 230, 269,
275 | mpjaodan 958 |
. . 3
β’ ((π β§ π β π·) β ((πβπ)β((πββ¨βπΌπ½ββ©)βπ)) = ((πβπ)βπ)) |
277 | 53, 276 | eqtrd 2773 |
. 2
β’ ((π β§ π β π·) β (((πβπ) β (πββ¨βπΌπ½ββ©))βπ) = ((πβπ)βπ)) |
278 | 40, 51, 277 | eqfnfvd 6986 |
1
β’ (π β ((πβπ) β (πββ¨βπΌπ½ββ©)) = (πβπ)) |