Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snsssng Structured version   Visualization version   GIF version

Theorem snsssng 32533
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.)
Assertion
Ref Expression
snsssng ((𝐴𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵)

Proof of Theorem snsssng
StepHypRef Expression
1 sssn 4826 . 2 ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵}))
2 snnzg 4774 . . . . . 6 (𝐴𝑉 → {𝐴} ≠ ∅)
32neneqd 2945 . . . . 5 (𝐴𝑉 → ¬ {𝐴} = ∅)
43pm2.21d 121 . . . 4 (𝐴𝑉 → ({𝐴} = ∅ → 𝐴 = 𝐵))
5 sneqrg 4839 . . . 4 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
64, 5jaod 860 . . 3 (𝐴𝑉 → (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵))
76imp 406 . 2 ((𝐴𝑉 ∧ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) → 𝐴 = 𝐵)
81, 7sylan2b 594 1 ((𝐴𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wss 3951  c0 4333  {csn 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3482  df-dif 3954  df-ss 3968  df-nul 4334  df-sn 4627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator