Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snsssng Structured version   Visualization version   GIF version

Theorem snsssng 30533
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.)
Assertion
Ref Expression
snsssng ((𝐴𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵)

Proof of Theorem snsssng
StepHypRef Expression
1 sssn 4725 . 2 ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵}))
2 snnzg 4676 . . . . . 6 (𝐴𝑉 → {𝐴} ≠ ∅)
32neneqd 2937 . . . . 5 (𝐴𝑉 → ¬ {𝐴} = ∅)
43pm2.21d 121 . . . 4 (𝐴𝑉 → ({𝐴} = ∅ → 𝐴 = 𝐵))
5 sneqrg 4736 . . . 4 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
64, 5jaod 859 . . 3 (𝐴𝑉 → (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵))
76imp 410 . 2 ((𝐴𝑉 ∧ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) → 𝐴 = 𝐵)
81, 7sylan2b 597 1 ((𝐴𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wcel 2112  wss 3853  c0 4223  {csn 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-v 3400  df-dif 3856  df-in 3860  df-ss 3870  df-nul 4224  df-sn 4528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator