![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snsssng | Structured version Visualization version GIF version |
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.) |
Ref | Expression |
---|---|
snsssng | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn 4851 | . 2 ⊢ ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) | |
2 | snnzg 4799 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
3 | 2 | neneqd 2951 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} = ∅) |
4 | 3 | pm2.21d 121 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = ∅ → 𝐴 = 𝐵)) |
5 | sneqrg 4864 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
6 | 4, 5 | jaod 858 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵)) |
7 | 6 | imp 406 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) → 𝐴 = 𝐵) |
8 | 1, 7 | sylan2b 593 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-sn 4649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |