| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snsssng | Structured version Visualization version GIF version | ||
| Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| snsssng | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssn 4807 | . 2 ⊢ ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) | |
| 2 | snnzg 4755 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
| 3 | 2 | neneqd 2938 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} = ∅) |
| 4 | 3 | pm2.21d 121 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = ∅ → 𝐴 = 𝐵)) |
| 5 | sneqrg 4820 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
| 6 | 4, 5 | jaod 859 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵)) |
| 7 | 6 | imp 406 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) → 𝐴 = 𝐵) |
| 8 | 1, 7 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-sn 4607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |