Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snsssng | Structured version Visualization version GIF version |
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.) |
Ref | Expression |
---|---|
snsssng | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn 4759 | . 2 ⊢ ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) | |
2 | snnzg 4710 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
3 | 2 | neneqd 2948 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} = ∅) |
4 | 3 | pm2.21d 121 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = ∅ → 𝐴 = 𝐵)) |
5 | sneqrg 4770 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | |
6 | 4, 5 | jaod 856 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵)) |
7 | 6 | imp 407 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) → 𝐴 = 𝐵) |
8 | 1, 7 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |