Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snsssng Structured version   Visualization version   GIF version

Theorem snsssng 32543
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) (Revised by Thierry Arnoux, 11-Apr-2024.)
Assertion
Ref Expression
snsssng ((𝐴𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵)

Proof of Theorem snsssng
StepHypRef Expression
1 sssn 4851 . 2 ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵}))
2 snnzg 4799 . . . . . 6 (𝐴𝑉 → {𝐴} ≠ ∅)
32neneqd 2951 . . . . 5 (𝐴𝑉 → ¬ {𝐴} = ∅)
43pm2.21d 121 . . . 4 (𝐴𝑉 → ({𝐴} = ∅ → 𝐴 = 𝐵))
5 sneqrg 4864 . . . 4 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
64, 5jaod 858 . . 3 (𝐴𝑉 → (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵))
76imp 406 . 2 ((𝐴𝑉 ∧ ({𝐴} = ∅ ∨ {𝐴} = {𝐵})) → 𝐴 = 𝐵)
81, 7sylan2b 593 1 ((𝐴𝑉 ∧ {𝐴} ⊆ {𝐵}) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wss 3976  c0 4352  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator