![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elunsn | Structured version Visualization version GIF version |
Description: Elementhood to a union with a singleton. (Contributed by Thierry Arnoux, 14-Dec-2023.) |
Ref | Expression |
---|---|
elunsn | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4176 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐶})) | |
2 | elsng 4662 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶)) | |
3 | 2 | orbi2d 914 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐶))) |
4 | 1, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 |
This theorem is referenced by: chnub 32976 cycpmco2lem7 33117 |
Copyright terms: Public domain | W3C validator |