MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunsn Structured version   Visualization version   GIF version

Theorem elunsn 4633
Description: Elementhood in a union with a singleton. (Contributed by Thierry Arnoux, 14-Dec-2023.)
Assertion
Ref Expression
elunsn (𝐴𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴𝐵𝐴 = 𝐶)))

Proof of Theorem elunsn
StepHypRef Expression
1 elun 4100 . 2 (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴𝐵𝐴 ∈ {𝐶}))
2 elsng 4587 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶))
32orbi2d 915 . 2 (𝐴𝑉 → ((𝐴𝐵𝐴 ∈ {𝐶}) ↔ (𝐴𝐵𝐴 = 𝐶)))
41, 3bitrid 283 1 (𝐴𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴𝐵𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1541  wcel 2111  cun 3895  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574
This theorem is referenced by:  f1ounsn  7206  chnub  18528  cycpmco2lem7  33101
  Copyright terms: Public domain W3C validator