Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elunsn Structured version   Visualization version   GIF version

Theorem elunsn 30858
Description: Elementhood to a union with a singleton. (Contributed by Thierry Arnoux, 14-Dec-2023.)
Assertion
Ref Expression
elunsn (𝐴𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴𝐵𝐴 = 𝐶)))

Proof of Theorem elunsn
StepHypRef Expression
1 elun 4083 . 2 (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴𝐵𝐴 ∈ {𝐶}))
2 elsng 4575 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶))
32orbi2d 913 . 2 (𝐴𝑉 → ((𝐴𝐵𝐴 ∈ {𝐶}) ↔ (𝐴𝐵𝐴 = 𝐶)))
41, 3syl5bb 283 1 (𝐴𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐶}) ↔ (𝐴𝐵𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844   = wceq 1539  wcel 2106  cun 3885  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-sn 4562
This theorem is referenced by:  cycpmco2lem7  31399
  Copyright terms: Public domain W3C validator