| Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neutru | Structured version Visualization version GIF version | ||
| Description: There does not exist exactly one set such that ⊤ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| neutru | ⊢ ¬ ∃!𝑥⊤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nexntru 36405 | . 2 ⊢ ¬ ∃𝑥 ¬ ⊤ | |
| 2 | eunex 5390 | . 2 ⊢ (∃!𝑥⊤ → ∃𝑥 ¬ ⊤) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ ∃!𝑥⊤ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ⊤wtru 1541 ∃wex 1779 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-nul 5306 ax-pow 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: nmotru 36409 |
| Copyright terms: Public domain | W3C validator |