Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neutru | Structured version Visualization version GIF version |
Description: There does not exist exactly one set such that ⊤ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
Ref | Expression |
---|---|
neutru | ⊢ ¬ ∃!𝑥⊤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nexntru 34176 | . 2 ⊢ ¬ ∃𝑥 ¬ ⊤ | |
2 | eunex 5263 | . 2 ⊢ (∃!𝑥⊤ → ∃𝑥 ¬ ⊤) | |
3 | 1, 2 | mto 200 | 1 ⊢ ¬ ∃!𝑥⊤ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1539 ∃wex 1781 ∃!weu 2587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-12 2175 ax-nul 5180 ax-pow 5238 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-mo 2557 df-eu 2588 |
This theorem is referenced by: nmotru 34180 |
Copyright terms: Public domain | W3C validator |