Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neutru Structured version   Visualization version   GIF version

Theorem neutru 34179
Description: There does not exist exactly one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
Assertion
Ref Expression
neutru ¬ ∃!𝑥

Proof of Theorem neutru
StepHypRef Expression
1 nexntru 34176 . 2 ¬ ∃𝑥 ¬ ⊤
2 eunex 5263 . 2 (∃!𝑥⊤ → ∃𝑥 ¬ ⊤)
31, 2mto 200 1 ¬ ∃!𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wtru 1539  wex 1781  ∃!weu 2587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-nul 5180  ax-pow 5238
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-mo 2557  df-eu 2588
This theorem is referenced by:  nmotru  34180
  Copyright terms: Public domain W3C validator