Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neutru Structured version   Visualization version   GIF version

Theorem neutru 35280
Description: There does not exist exactly one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
Assertion
Ref Expression
neutru ¬ ∃!𝑥

Proof of Theorem neutru
StepHypRef Expression
1 nexntru 35277 . 2 ¬ ∃𝑥 ¬ ⊤
2 eunex 5387 . 2 (∃!𝑥⊤ → ∃𝑥 ¬ ⊤)
31, 2mto 196 1 ¬ ∃!𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wtru 1542  wex 1781  ∃!weu 2562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-nul 5305  ax-pow 5362
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-mo 2534  df-eu 2563
This theorem is referenced by:  nmotru  35281
  Copyright terms: Public domain W3C validator