Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neutru | Structured version Visualization version GIF version |
Description: There does not exist exactly one set such that ⊤ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
Ref | Expression |
---|---|
neutru | ⊢ ¬ ∃!𝑥⊤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nexntru 34593 | . 2 ⊢ ¬ ∃𝑥 ¬ ⊤ | |
2 | eunex 5313 | . 2 ⊢ (∃!𝑥⊤ → ∃𝑥 ¬ ⊤) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ ∃!𝑥⊤ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤wtru 1540 ∃wex 1782 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-nul 5230 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 |
This theorem is referenced by: nmotru 34597 |
Copyright terms: Public domain | W3C validator |