Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neutru Structured version   Visualization version   GIF version

Theorem neutru 36373
Description: There does not exist exactly one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
Assertion
Ref Expression
neutru ¬ ∃!𝑥

Proof of Theorem neutru
StepHypRef Expression
1 nexntru 36370 . 2 ¬ ∃𝑥 ¬ ⊤
2 eunex 5408 . 2 (∃!𝑥⊤ → ∃𝑥 ¬ ⊤)
31, 2mto 197 1 ¬ ∃!𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wtru 1538  wex 1777  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-nul 5324  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543  df-eu 2572
This theorem is referenced by:  nmotru  36374
  Copyright terms: Public domain W3C validator