Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcd | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcd.1 | ⊢ Ⅎ𝑦𝜑 |
nfcd.2 | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
nfcd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcd.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | nfcd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
3 | 1, 2 | alrimi 2209 | . 2 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
4 | df-nfc 2888 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 df-nfc 2888 |
This theorem is referenced by: nfabdw 2929 nfabdwOLD 2930 nfabd 2931 dvelimdc 2933 nfcvf 2935 sbnfc2 4367 |
Copyright terms: Public domain | W3C validator |