MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcd Structured version   Visualization version   GIF version

Theorem nfcd 2887
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcd.1 𝑦𝜑
nfcd.2 (𝜑 → Ⅎ𝑥 𝑦𝐴)
Assertion
Ref Expression
nfcd (𝜑𝑥𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem nfcd
StepHypRef Expression
1 nfcd.1 . . 3 𝑦𝜑
2 nfcd.2 . . 3 (𝜑 → Ⅎ𝑥 𝑦𝐴)
31, 2alrimi 2202 . 2 (𝜑 → ∀𝑦𝑥 𝑦𝐴)
4 df-nfc 2881 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
53, 4sylibr 233 1 (𝜑𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532  wnf 1778  wcel 2099  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-ex 1775  df-nf 1779  df-nfc 2881
This theorem is referenced by:  nfabdw  2923  nfabdwOLD  2924  nfabd  2925  dvelimdc  2927  nfcvf  2929  sbnfc2  4437
  Copyright terms: Public domain W3C validator