MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbnfc2 Structured version   Visualization version   GIF version

Theorem sbnfc2 4396
Description: Two ways of expressing "𝑥 is (effectively) not free in 𝐴". (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbnfc2 (𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbnfc2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 vex 3449 . . . . 5 𝑦 ∈ V
2 csbtt 3872 . . . . 5 ((𝑦 ∈ V ∧ 𝑥𝐴) → 𝑦 / 𝑥𝐴 = 𝐴)
31, 2mpan 688 . . . 4 (𝑥𝐴𝑦 / 𝑥𝐴 = 𝐴)
4 vex 3449 . . . . 5 𝑧 ∈ V
5 csbtt 3872 . . . . 5 ((𝑧 ∈ V ∧ 𝑥𝐴) → 𝑧 / 𝑥𝐴 = 𝐴)
64, 5mpan 688 . . . 4 (𝑥𝐴𝑧 / 𝑥𝐴 = 𝐴)
73, 6eqtr4d 2779 . . 3 (𝑥𝐴𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
87alrimivv 1931 . 2 (𝑥𝐴 → ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
9 nfv 1917 . . 3 𝑤𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴
10 eleq2 2826 . . . . . 6 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → (𝑤𝑦 / 𝑥𝐴𝑤𝑧 / 𝑥𝐴))
11 sbsbc 3743 . . . . . . 7 ([𝑦 / 𝑥]𝑤𝐴[𝑦 / 𝑥]𝑤𝐴)
12 sbcel2 4375 . . . . . . 7 ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴)
1311, 12bitri 274 . . . . . 6 ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴)
14 sbsbc 3743 . . . . . . 7 ([𝑧 / 𝑥]𝑤𝐴[𝑧 / 𝑥]𝑤𝐴)
15 sbcel2 4375 . . . . . . 7 ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴)
1614, 15bitri 274 . . . . . 6 ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴)
1710, 13, 163bitr4g 313 . . . . 5 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → ([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
18172alimi 1814 . . . 4 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → ∀𝑦𝑧([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
19 sbnf2 2354 . . . 4 (Ⅎ𝑥 𝑤𝐴 ↔ ∀𝑦𝑧([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
2018, 19sylibr 233 . . 3 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → Ⅎ𝑥 𝑤𝐴)
219, 20nfcd 2895 . 2 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑥𝐴)
228, 21impbii 208 1 (𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539   = wceq 1541  wnf 1785  [wsb 2067  wcel 2106  wnfc 2887  Vcvv 3445  [wsbc 3739  csb 3855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-nul 4283
This theorem is referenced by:  eusvnf  5347
  Copyright terms: Public domain W3C validator