| Step | Hyp | Ref
| Expression |
| 1 | | vex 3463 |
. . . . 5
⊢ 𝑦 ∈ V |
| 2 | | csbtt 3891 |
. . . . 5
⊢ ((𝑦 ∈ V ∧
Ⅎ𝑥𝐴) → ⦋𝑦 / 𝑥⦌𝐴 = 𝐴) |
| 3 | 1, 2 | mpan 690 |
. . . 4
⊢
(Ⅎ𝑥𝐴 → ⦋𝑦 / 𝑥⦌𝐴 = 𝐴) |
| 4 | | vex 3463 |
. . . . 5
⊢ 𝑧 ∈ V |
| 5 | | csbtt 3891 |
. . . . 5
⊢ ((𝑧 ∈ V ∧
Ⅎ𝑥𝐴) → ⦋𝑧 / 𝑥⦌𝐴 = 𝐴) |
| 6 | 4, 5 | mpan 690 |
. . . 4
⊢
(Ⅎ𝑥𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = 𝐴) |
| 7 | 3, 6 | eqtr4d 2773 |
. . 3
⊢
(Ⅎ𝑥𝐴 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 8 | 7 | alrimivv 1928 |
. 2
⊢
(Ⅎ𝑥𝐴 → ∀𝑦∀𝑧⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 9 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑤∀𝑦∀𝑧⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 |
| 10 | | eleq2 2823 |
. . . . . 6
⊢
(⦋𝑦 /
𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → (𝑤 ∈ ⦋𝑦 / 𝑥⦌𝐴 ↔ 𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐴)) |
| 11 | | sbsbc 3769 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑤 ∈ 𝐴) |
| 12 | | sbcel2 4393 |
. . . . . . 7
⊢
([𝑦 / 𝑥]𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋𝑦 / 𝑥⦌𝐴) |
| 13 | 11, 12 | bitri 275 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋𝑦 / 𝑥⦌𝐴) |
| 14 | | sbsbc 3769 |
. . . . . . 7
⊢ ([𝑧 / 𝑥]𝑤 ∈ 𝐴 ↔ [𝑧 / 𝑥]𝑤 ∈ 𝐴) |
| 15 | | sbcel2 4393 |
. . . . . . 7
⊢
([𝑧 / 𝑥]𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐴) |
| 16 | 14, 15 | bitri 275 |
. . . . . 6
⊢ ([𝑧 / 𝑥]𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐴) |
| 17 | 10, 13, 16 | 3bitr4g 314 |
. . . . 5
⊢
(⦋𝑦 /
𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ([𝑦 / 𝑥]𝑤 ∈ 𝐴 ↔ [𝑧 / 𝑥]𝑤 ∈ 𝐴)) |
| 18 | 17 | 2alimi 1812 |
. . . 4
⊢
(∀𝑦∀𝑧⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ∀𝑦∀𝑧([𝑦 / 𝑥]𝑤 ∈ 𝐴 ↔ [𝑧 / 𝑥]𝑤 ∈ 𝐴)) |
| 19 | | sbnf2 2360 |
. . . 4
⊢
(Ⅎ𝑥 𝑤 ∈ 𝐴 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝑤 ∈ 𝐴 ↔ [𝑧 / 𝑥]𝑤 ∈ 𝐴)) |
| 20 | 18, 19 | sylibr 234 |
. . 3
⊢
(∀𝑦∀𝑧⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → Ⅎ𝑥 𝑤 ∈ 𝐴) |
| 21 | 9, 20 | nfcd 2891 |
. 2
⊢
(∀𝑦∀𝑧⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → Ⅎ𝑥𝐴) |
| 22 | 8, 21 | impbii 209 |
1
⊢
(Ⅎ𝑥𝐴 ↔ ∀𝑦∀𝑧⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |