| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfabd | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfabdw 2916 when possible. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-9 2121 and ax-ext 2703. (Revised by Wolf Lammen, 23-May-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfabd.1 | ⊢ Ⅎ𝑦𝜑 |
| nfabd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfabd | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 2 | df-clab 2710 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 3 | nfabd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfabd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | nfsbd 2522 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
| 6 | 2, 5 | nfxfrd 1855 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 7 | 1, 6 | nfcd 2887 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 [wsb 2067 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-nfc 2881 |
| This theorem is referenced by: nfabd2 2918 nfsbcd 3760 nfcsbd 3870 nfiotad 6437 nfiundg 49707 |
| Copyright terms: Public domain | W3C validator |