![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfabd | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfabdw 2932 when possible. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-9 2118 and ax-ext 2711. (Revised by Wolf Lammen, 23-May-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfabd.1 | ⊢ Ⅎ𝑦𝜑 |
nfabd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfabd | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑧𝜑 | |
2 | df-clab 2718 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
3 | nfabd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfabd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 3, 4 | nfsbd 2530 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
6 | 2, 5 | nfxfrd 1852 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
7 | 1, 6 | nfcd 2901 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1781 [wsb 2064 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-nfc 2895 |
This theorem is referenced by: nfabd2 2935 nfsbcd 3828 nfcsbd 3947 nfiotad 6530 nfiundg 48767 |
Copyright terms: Public domain | W3C validator |