![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version |
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2941 | . 2 ⊢ Ⅎ𝑥𝑧 | |
2 | nfcv 2941 | . 2 ⊢ Ⅎ𝑧𝑦 | |
3 | id 22 | . 2 ⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | |
4 | 1, 2, 3 | dvelimc 2964 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1651 Ⅎwnfc 2928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-cleq 2792 df-clel 2795 df-nfc 2930 |
This theorem is referenced by: nfcvf2 2966 nfrald 3125 ralcom2 3285 nfreud 3293 nfrmod 3294 nfrmo 3296 nfdisj 4823 nfcvb 5046 nfriotad 6847 nfixp 8167 axextnd 9701 axrepndlem2 9703 axrepnd 9704 axunndlem1 9705 axunnd 9706 axpowndlem2 9708 axpowndlem4 9710 axregndlem2 9713 axregnd 9714 axinfndlem1 9715 axinfnd 9716 axacndlem4 9720 axacndlem5 9721 axacnd 9722 axextdist 32217 bj-nfcsym 33377 |
Copyright terms: Public domain | W3C validator |