| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version | ||
| Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfcv 2894 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2703. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑤 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 2 | nfv 1915 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝑧 | |
| 3 | elequ2 2126 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑦)) | |
| 4 | 2, 3 | dvelimnf 2453 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
| 5 | 1, 4 | nfcd 2887 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-nfc 2881 |
| This theorem is referenced by: nfcvf2 2922 nfrald 3338 ralcom2 3343 nfrmod 3391 nfreud 3392 nfrmo 3393 nfdisj 5069 nfcvb 5312 nfriotad 7314 nfixp 8841 axextnd 10482 axrepndlem2 10484 axrepnd 10485 axunndlem1 10486 axunnd 10487 axpowndlem2 10489 axpowndlem4 10491 axregndlem2 10494 axregnd 10495 axinfndlem1 10496 axinfnd 10497 axacndlem4 10501 axacndlem5 10502 axacnd 10503 axsepg2 35094 axsepg2ALT 35095 axnulg 35119 axextdist 35841 bj-nfcsym 36941 |
| Copyright terms: Public domain | W3C validator |