MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf Structured version   Visualization version   GIF version

Theorem nfcvf 3009
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2390. See nfcv 2979 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2795. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)

Proof of Theorem nfcvf
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑤 ¬ ∀𝑥 𝑥 = 𝑦
2 nfv 1915 . . 3 𝑥 𝑤𝑧
3 elequ2 2129 . . 3 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
42, 3dvelimnf 2475 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤𝑦)
51, 4nfcd 2970 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wnfc 2963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-13 2390
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-nfc 2965
This theorem is referenced by:  nfcvf2  3010  nfrald  3226  ralcom2  3365  nfreud  3374  nfrmod  3375  nfrmo  3379  nfdisj  5046  nfcvb  5279  nfriotad  7127  nfixp  8483  axextnd  10015  axrepndlem2  10017  axrepnd  10018  axunndlem1  10019  axunnd  10020  axpowndlem2  10022  axpowndlem4  10024  axregndlem2  10027  axregnd  10028  axinfndlem1  10029  axinfnd  10030  axacndlem4  10034  axacndlem5  10035  axacnd  10036  axextdist  33046  bj-nfcsym  34217
  Copyright terms: Public domain W3C validator