![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version |
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2371. See nfcv 2903 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2703. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑤 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝑧 | |
3 | elequ2 2121 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑦)) | |
4 | 2, 3 | dvelimnf 2452 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
5 | 1, 4 | nfcd 2891 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 Ⅎwnfc 2883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2371 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-nfc 2885 |
This theorem is referenced by: nfcvf2 2933 nfrald 3368 ralcom2 3373 nfrmod 3428 nfreud 3429 nfrmo 3430 nfdisj 5126 nfcvb 5374 nfriotad 7376 nfixp 8910 axextnd 10585 axrepndlem2 10587 axrepnd 10588 axunndlem1 10589 axunnd 10590 axpowndlem2 10592 axpowndlem4 10594 axregndlem2 10597 axregnd 10598 axinfndlem1 10599 axinfnd 10600 axacndlem4 10604 axacndlem5 10605 axacnd 10606 axextdist 34766 bj-nfcsym 35774 |
Copyright terms: Public domain | W3C validator |