![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version |
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2366. See nfcv 2898 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2698. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1910 | . 2 ⊢ Ⅎ𝑤 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | nfv 1910 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝑧 | |
3 | elequ2 2114 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑦)) | |
4 | 2, 3 | dvelimnf 2447 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
5 | 1, 4 | nfcd 2886 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1532 Ⅎwnfc 2878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-13 2366 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-nfc 2880 |
This theorem is referenced by: nfcvf2 2928 nfrald 3363 ralcom2 3368 nfrmod 3423 nfreud 3424 nfrmo 3425 nfdisj 5120 nfcvb 5370 nfriotad 7382 nfixp 8927 axextnd 10606 axrepndlem2 10608 axrepnd 10609 axunndlem1 10610 axunnd 10611 axpowndlem2 10613 axpowndlem4 10615 axregndlem2 10618 axregnd 10619 axinfndlem1 10620 axinfnd 10621 axacndlem4 10625 axacndlem5 10626 axacnd 10627 axextdist 35331 bj-nfcsym 36313 |
Copyright terms: Public domain | W3C validator |