MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf Structured version   Visualization version   GIF version

Theorem nfcvf 2918
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2370. See nfcv 2891 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2701. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)

Proof of Theorem nfcvf
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑤 ¬ ∀𝑥 𝑥 = 𝑦
2 nfv 1914 . . 3 𝑥 𝑤𝑧
3 elequ2 2124 . . 3 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
42, 3dvelimnf 2451 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤𝑦)
51, 4nfcd 2884 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wnfc 2876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-nfc 2878
This theorem is referenced by:  nfcvf2  2919  nfrald  3343  ralcom2  3348  nfrmod  3398  nfreud  3399  nfrmo  3400  nfdisj  5082  nfcvb  5326  nfriotad  7337  nfixp  8867  axextnd  10520  axrepndlem2  10522  axrepnd  10523  axunndlem1  10524  axunnd  10525  axpowndlem2  10527  axpowndlem4  10529  axregndlem2  10532  axregnd  10533  axinfndlem1  10534  axinfnd  10535  axacndlem4  10539  axacndlem5  10540  axacnd  10541  axsepg2  35045  axsepg2ALT  35046  axnulg  35055  axextdist  35760  bj-nfcsym  36860
  Copyright terms: Public domain W3C validator