Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version |
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfcv 2906 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2709. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑤 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝑧 | |
3 | elequ2 2123 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑦)) | |
4 | 2, 3 | dvelimnf 2453 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
5 | 1, 4 | nfcd 2894 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-nfc 2888 |
This theorem is referenced by: nfcvf2 2936 nfrald 3148 ralcom2 3288 nfreud 3298 nfrmod 3299 nfrmo 3303 nfdisj 5048 nfcvb 5294 nfriotad 7224 nfixp 8663 axextnd 10278 axrepndlem2 10280 axrepnd 10281 axunndlem1 10282 axunnd 10283 axpowndlem2 10285 axpowndlem4 10287 axregndlem2 10290 axregnd 10291 axinfndlem1 10292 axinfnd 10293 axacndlem4 10297 axacndlem5 10298 axacnd 10299 axextdist 33681 bj-nfcsym 35011 |
Copyright terms: Public domain | W3C validator |