| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version | ||
| Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2370. See nfcv 2891 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2701. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑤 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝑧 | |
| 3 | elequ2 2124 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑦)) | |
| 4 | 2, 3 | dvelimnf 2451 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
| 5 | 1, 4 | nfcd 2884 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-nfc 2878 |
| This theorem is referenced by: nfcvf2 2919 nfrald 3343 ralcom2 3348 nfrmod 3398 nfreud 3399 nfrmo 3400 nfdisj 5082 nfcvb 5326 nfriotad 7337 nfixp 8867 axextnd 10520 axrepndlem2 10522 axrepnd 10523 axunndlem1 10524 axunnd 10525 axpowndlem2 10527 axpowndlem4 10529 axregndlem2 10532 axregnd 10533 axinfndlem1 10534 axinfnd 10535 axacndlem4 10539 axacndlem5 10540 axacnd 10541 axsepg2 35045 axsepg2ALT 35046 axnulg 35055 axextdist 35760 bj-nfcsym 36860 |
| Copyright terms: Public domain | W3C validator |