| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version | ||
| Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2377. See nfcv 2899 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2708. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑤 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝑧 | |
| 3 | elequ2 2124 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑦)) | |
| 4 | 2, 3 | dvelimnf 2458 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
| 5 | 1, 4 | nfcd 2892 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnfc 2884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-nfc 2886 |
| This theorem is referenced by: nfcvf2 2927 nfrald 3356 ralcom2 3361 nfrmod 3416 nfreud 3417 nfrmo 3418 nfdisj 5104 nfcvb 5351 nfriotad 7378 nfixp 8936 axextnd 10610 axrepndlem2 10612 axrepnd 10613 axunndlem1 10614 axunnd 10615 axpowndlem2 10617 axpowndlem4 10619 axregndlem2 10622 axregnd 10623 axinfndlem1 10624 axinfnd 10625 axacndlem4 10629 axacndlem5 10630 axacnd 10631 axsepg2 35118 axsepg2ALT 35119 axnulg 35128 axextdist 35822 bj-nfcsym 36922 |
| Copyright terms: Public domain | W3C validator |