MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf Structured version   Visualization version   GIF version

Theorem nfcvf 2932
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2371. See nfcv 2903 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2703. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)

Proof of Theorem nfcvf
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . 2 𝑤 ¬ ∀𝑥 𝑥 = 𝑦
2 nfv 1917 . . 3 𝑥 𝑤𝑧
3 elequ2 2121 . . 3 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
42, 3dvelimnf 2452 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤𝑦)
51, 4nfcd 2891 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539  wnfc 2883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2371
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-nfc 2885
This theorem is referenced by:  nfcvf2  2933  nfrald  3368  ralcom2  3373  nfrmod  3428  nfreud  3429  nfrmo  3430  nfdisj  5126  nfcvb  5374  nfriotad  7376  nfixp  8910  axextnd  10585  axrepndlem2  10587  axrepnd  10588  axunndlem1  10589  axunnd  10590  axpowndlem2  10592  axpowndlem4  10594  axregndlem2  10597  axregnd  10598  axinfndlem1  10599  axinfnd  10600  axacndlem4  10604  axacndlem5  10605  axacnd  10606  axextdist  34766  bj-nfcsym  35774
  Copyright terms: Public domain W3C validator