| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version | ||
| Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2370. See nfcv 2891 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2701. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑤 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝑧 | |
| 3 | elequ2 2124 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑦)) | |
| 4 | 2, 3 | dvelimnf 2451 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
| 5 | 1, 4 | nfcd 2884 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-nfc 2878 |
| This theorem is referenced by: nfcvf2 2919 nfrald 3335 ralcom2 3340 nfrmod 3390 nfreud 3391 nfrmo 3392 nfdisj 5072 nfcvb 5315 nfriotad 7317 nfixp 8844 axextnd 10485 axrepndlem2 10487 axrepnd 10488 axunndlem1 10489 axunnd 10490 axpowndlem2 10492 axpowndlem4 10494 axregndlem2 10497 axregnd 10498 axinfndlem1 10499 axinfnd 10500 axacndlem4 10504 axacndlem5 10505 axacnd 10506 axsepg2 35049 axsepg2ALT 35050 axnulg 35059 axextdist 35773 bj-nfcsym 36873 |
| Copyright terms: Public domain | W3C validator |