MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf Structured version   Visualization version   GIF version

Theorem nfcvf 2935
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfcv 2906 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2709. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)

Proof of Theorem nfcvf
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . 2 𝑤 ¬ ∀𝑥 𝑥 = 𝑦
2 nfv 1918 . . 3 𝑥 𝑤𝑧
3 elequ2 2123 . . 3 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
42, 3dvelimnf 2453 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤𝑦)
51, 4nfcd 2894 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-nfc 2888
This theorem is referenced by:  nfcvf2  2936  nfrald  3148  ralcom2  3288  nfreud  3298  nfrmod  3299  nfrmo  3303  nfdisj  5048  nfcvb  5294  nfriotad  7224  nfixp  8663  axextnd  10278  axrepndlem2  10280  axrepnd  10281  axunndlem1  10282  axunnd  10283  axpowndlem2  10285  axpowndlem4  10287  axregndlem2  10290  axregnd  10291  axinfndlem1  10292  axinfnd  10293  axacndlem4  10297  axacndlem5  10298  axacnd  10299  axextdist  33681  bj-nfcsym  35011
  Copyright terms: Public domain W3C validator