| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version | ||
| Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2370. See nfcv 2891 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2701. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑤 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝑧 | |
| 3 | elequ2 2124 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑦)) | |
| 4 | 2, 3 | dvelimnf 2451 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
| 5 | 1, 4 | nfcd 2884 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-nfc 2878 |
| This theorem is referenced by: nfcvf2 2919 nfrald 3346 ralcom2 3351 nfrmod 3401 nfreud 3402 nfrmo 3403 nfdisj 5087 nfcvb 5331 nfriotad 7355 nfixp 8890 axextnd 10544 axrepndlem2 10546 axrepnd 10547 axunndlem1 10548 axunnd 10549 axpowndlem2 10551 axpowndlem4 10553 axregndlem2 10556 axregnd 10557 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 axsepg2 35072 axsepg2ALT 35073 axnulg 35082 axextdist 35787 bj-nfcsym 36887 |
| Copyright terms: Public domain | W3C validator |