![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvf | Structured version Visualization version GIF version |
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2380. See nfcv 2908 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2711. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑤 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝑧 | |
3 | elequ2 2123 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑦)) | |
4 | 2, 3 | dvelimnf 2461 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝑦) |
5 | 1, 4 | nfcd 2901 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-nfc 2895 |
This theorem is referenced by: nfcvf2 2939 nfrald 3380 ralcom2 3385 nfrmod 3439 nfreud 3440 nfrmo 3441 nfdisj 5146 nfcvb 5394 nfriotad 7416 nfixp 8975 axextnd 10660 axrepndlem2 10662 axrepnd 10663 axunndlem1 10664 axunnd 10665 axpowndlem2 10667 axpowndlem4 10669 axregndlem2 10672 axregnd 10673 axinfndlem1 10674 axinfnd 10675 axacndlem4 10679 axacndlem5 10680 axacnd 10681 axsepg2 35058 axsepg2ALT 35059 axnulg 35068 axextdist 35763 bj-nfcsym 36865 |
Copyright terms: Public domain | W3C validator |