MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf Structured version   Visualization version   GIF version

Theorem nfcvf 2921
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfcv 2894 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2703. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)

Proof of Theorem nfcvf
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑤 ¬ ∀𝑥 𝑥 = 𝑦
2 nfv 1915 . . 3 𝑥 𝑤𝑧
3 elequ2 2126 . . 3 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
42, 3dvelimnf 2453 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤𝑦)
51, 4nfcd 2887 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-nfc 2881
This theorem is referenced by:  nfcvf2  2922  nfrald  3338  ralcom2  3343  nfrmod  3391  nfreud  3392  nfrmo  3393  nfdisj  5069  nfcvb  5312  nfriotad  7314  nfixp  8841  axextnd  10482  axrepndlem2  10484  axrepnd  10485  axunndlem1  10486  axunnd  10487  axpowndlem2  10489  axpowndlem4  10491  axregndlem2  10494  axregnd  10495  axinfndlem1  10496  axinfnd  10497  axacndlem4  10501  axacndlem5  10502  axacnd  10503  axsepg2  35094  axsepg2ALT  35095  axnulg  35119  axextdist  35841  bj-nfcsym  36941
  Copyright terms: Public domain W3C validator