MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf Structured version   Visualization version   GIF version

Theorem nfcvf 2926
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2377. See nfcv 2899 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2708. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)

Proof of Theorem nfcvf
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑤 ¬ ∀𝑥 𝑥 = 𝑦
2 nfv 1914 . . 3 𝑥 𝑤𝑧
3 elequ2 2124 . . 3 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
42, 3dvelimnf 2458 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤𝑦)
51, 4nfcd 2892 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2377
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-nfc 2886
This theorem is referenced by:  nfcvf2  2927  nfrald  3356  ralcom2  3361  nfrmod  3416  nfreud  3417  nfrmo  3418  nfdisj  5104  nfcvb  5351  nfriotad  7378  nfixp  8936  axextnd  10610  axrepndlem2  10612  axrepnd  10613  axunndlem1  10614  axunnd  10615  axpowndlem2  10617  axpowndlem4  10619  axregndlem2  10622  axregnd  10623  axinfndlem1  10624  axinfnd  10625  axacndlem4  10629  axacndlem5  10630  axacnd  10631  axsepg2  35118  axsepg2ALT  35119  axnulg  35128  axextdist  35822  bj-nfcsym  36922
  Copyright terms: Public domain W3C validator