Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvelimdc | Structured version Visualization version GIF version |
Description: Deduction form of dvelimc 2934. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvelimdc.1 | ⊢ Ⅎ𝑥𝜑 |
dvelimdc.2 | ⊢ Ⅎ𝑧𝜑 |
dvelimdc.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
dvelimdc.4 | ⊢ (𝜑 → Ⅎ𝑧𝐵) |
dvelimdc.5 | ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
dvelimdc | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . 3 ⊢ Ⅎ𝑤(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | dvelimdc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | dvelimdc.2 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
4 | dvelimdc.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 4 | nfcrd 2895 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑤 ∈ 𝐴) |
6 | dvelimdc.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝐵) | |
7 | 6 | nfcrd 2895 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧 𝑤 ∈ 𝐵) |
8 | dvelimdc.5 | . . . . . 6 ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) | |
9 | eleq2 2827 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) | |
10 | 8, 9 | syl6 35 | . . . . 5 ⊢ (𝜑 → (𝑧 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵))) |
11 | 2, 3, 5, 7, 10 | dvelimdf 2449 | . . . 4 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝐵)) |
12 | 11 | imp 406 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑤 ∈ 𝐵) |
13 | 1, 12 | nfcd 2894 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐵) |
14 | 13 | ex 412 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-cleq 2730 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: dvelimc 2934 |
Copyright terms: Public domain | W3C validator |