| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvelimdc | Structured version Visualization version GIF version | ||
| Description: Deduction form of dvelimc 2925. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvelimdc.1 | ⊢ Ⅎ𝑥𝜑 |
| dvelimdc.2 | ⊢ Ⅎ𝑧𝜑 |
| dvelimdc.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| dvelimdc.4 | ⊢ (𝜑 → Ⅎ𝑧𝐵) |
| dvelimdc.5 | ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| dvelimdc | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑤(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | |
| 2 | dvelimdc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | dvelimdc.2 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
| 4 | dvelimdc.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 4 | nfcrd 2893 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑤 ∈ 𝐴) |
| 6 | dvelimdc.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝐵) | |
| 7 | 6 | nfcrd 2893 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧 𝑤 ∈ 𝐵) |
| 8 | dvelimdc.5 | . . . . . 6 ⊢ (𝜑 → (𝑧 = 𝑦 → 𝐴 = 𝐵)) | |
| 9 | eleq2 2824 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵)) | |
| 10 | 8, 9 | syl6 35 | . . . . 5 ⊢ (𝜑 → (𝑧 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵))) |
| 11 | 2, 3, 5, 7, 10 | dvelimdf 2454 | . . . 4 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 ∈ 𝐵)) |
| 12 | 11 | imp 406 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑤 ∈ 𝐵) |
| 13 | 1, 12 | nfcd 2892 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐵) |
| 14 | 13 | ex 412 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2728 df-clel 2810 df-nfc 2886 |
| This theorem is referenced by: dvelimc 2925 |
| Copyright terms: Public domain | W3C validator |