![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcrd | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfcrd | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
2 | nfcr 2889 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-nf 1785 df-clel 2814 df-nfc 2886 |
This theorem is referenced by: nfeld 2915 dvelimdc 2931 nfraldw 3288 nfcsbd 3869 nfcsbw 3870 nfifd 4503 axextnd 10449 axrepndlem1 10450 axunndlem1 10453 axregnd 10462 axextdist 34060 nfintd 46797 nfiund 46798 nfiundg 46799 |
Copyright terms: Public domain | W3C validator |