| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcrd | Structured version Visualization version GIF version | ||
| Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfcrd | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 2 | nfcr 2884 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 |
| This theorem is referenced by: nfeld 2906 dvelimdc 2919 nfraldw 3277 nfcsbd 3870 nfcsbw 3871 nfifd 4502 axextnd 10482 axrepndlem1 10483 axunndlem1 10486 axregnd 10495 nfchnd 18517 axsepg2 35094 axsepg2ALT 35095 axextdist 35841 nfintd 49713 nfiund 49714 nfiundg 49715 |
| Copyright terms: Public domain | W3C validator |