MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrd Structured version   Visualization version   GIF version

Theorem nfcrd 2888
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcrd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfcrd (𝜑 → Ⅎ𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfcrd
StepHypRef Expression
1 nfcrd.1 . 2 (𝜑𝑥𝐴)
2 nfcr 2884 . 2 (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1784  wcel 2111  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-clel 2806  df-nfc 2881
This theorem is referenced by:  nfeld  2906  dvelimdc  2919  nfraldw  3277  nfcsbd  3870  nfcsbw  3871  nfifd  4502  axextnd  10482  axrepndlem1  10483  axunndlem1  10486  axregnd  10495  nfchnd  18517  axsepg2  35094  axsepg2ALT  35095  axextdist  35841  nfintd  49713  nfiund  49714  nfiundg  49715
  Copyright terms: Public domain W3C validator