Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcrd | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfcrd | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
2 | nfcr 2891 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: nfeld 2917 dvelimdc 2933 nfraldw 3146 nfcsbd 3854 nfcsbw 3855 nfifd 4485 axextnd 10278 axrepndlem1 10279 axunndlem1 10282 axregnd 10291 axextdist 33681 nfintd 46265 nfiund 46266 nfiundg 46267 |
Copyright terms: Public domain | W3C validator |