MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrd Structured version   Visualization version   GIF version

Theorem nfcrd 2893
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcrd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfcrd (𝜑 → Ⅎ𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfcrd
StepHypRef Expression
1 nfcrd.1 . 2 (𝜑𝑥𝐴)
2 nfcr 2889 . 2 (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1783  wcel 2109  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-clel 2810  df-nfc 2886
This theorem is referenced by:  nfeld  2911  dvelimdc  2924  nfraldw  3293  nfcsbd  3904  nfcsbw  3905  nfifd  4535  axextnd  10610  axrepndlem1  10611  axunndlem1  10614  axregnd  10623  axsepg2  35118  axsepg2ALT  35119  axextdist  35822  nfintd  49504  nfiund  49505  nfiundg  49506
  Copyright terms: Public domain W3C validator