MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrd Structured version   Visualization version   GIF version

Theorem nfcrd 2895
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcrd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfcrd (𝜑 → Ⅎ𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfcrd
StepHypRef Expression
1 nfcrd.1 . 2 (𝜑𝑥𝐴)
2 nfcr 2891 . 2 (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1787  wcel 2108  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-clel 2817  df-nfc 2888
This theorem is referenced by:  nfeld  2917  dvelimdc  2933  nfraldw  3146  nfcsbd  3854  nfcsbw  3855  nfifd  4485  axextnd  10278  axrepndlem1  10279  axunndlem1  10282  axregnd  10291  axextdist  33681  nfintd  46265  nfiund  46266  nfiundg  46267
  Copyright terms: Public domain W3C validator