| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcrd | Structured version Visualization version GIF version | ||
| Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcrd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfcrd | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcrd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 2 | nfcr 2881 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 |
| This theorem is referenced by: nfeld 2903 dvelimdc 2916 nfraldw 3283 nfcsbd 3887 nfcsbw 3888 nfifd 4518 axextnd 10544 axrepndlem1 10545 axunndlem1 10548 axregnd 10557 axsepg2 35072 axsepg2ALT 35073 axextdist 35787 nfintd 49659 nfiund 49660 nfiundg 49661 |
| Copyright terms: Public domain | W3C validator |