MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrd Structured version   Visualization version   GIF version

Theorem nfcrd 2976
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfcrd (𝜑 → Ⅎ𝑥 𝑦𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem nfcrd
StepHypRef Expression
1 nfeqd.1 . 2 (𝜑𝑥𝐴)
2 nfcr 2961 . 2 (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1882  wcel 2164  wnfc 2956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-12 2220
This theorem depends on definitions:  df-bi 199  df-ex 1879  df-nfc 2958
This theorem is referenced by:  nfeqd  2977  nfeld  2978  dvelimdc  2991  nfcsbd  3774  nfifd  4336  axextnd  9735  axrepndlem1  9736  axunndlem1  9739  axregnd  9748  axextdist  32238  nfintd  43325  nfiund  43326
  Copyright terms: Public domain W3C validator