Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfned | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfned.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfned.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfned | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfned.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfned.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | 2, 3 | nfeqd 2917 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
5 | 4 | nfnd 1861 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝐴 = 𝐵) |
6 | 1, 5 | nfxfrd 1856 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 Ⅎwnf 1786 Ⅎwnfc 2887 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-cleq 2730 df-nfc 2889 df-ne 2944 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |