MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqd Structured version   Visualization version   GIF version

Theorem nfeqd 2914
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeqd (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)

Proof of Theorem nfeqd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2726 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1918 . . 3 𝑦𝜑
3 nfeqd.1 . . . . . 6 (𝜑𝑥𝐴)
4 df-nfc 2886 . . . . . 6 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
53, 4sylib 217 . . . . 5 (𝜑 → ∀𝑦𝑥 𝑦𝐴)
6519.21bi 2183 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 nfeqd.2 . . . . . 6 (𝜑𝑥𝐵)
8 df-nfc 2886 . . . . . 6 (𝑥𝐵 ↔ ∀𝑦𝑥 𝑦𝐵)
97, 8sylib 217 . . . . 5 (𝜑 → ∀𝑦𝑥 𝑦𝐵)
10919.21bi 2183 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
116, 10nfbid 1906 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝑦𝐵))
122, 11nfald 2322 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝑦𝐵))
131, 12nfxfrd 1857 1 (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  wnf 1786  wcel 2107  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-nf 1787  df-cleq 2725  df-nfc 2886
This theorem is referenced by:  nfeld  2915  nfeq  2917  nfned  3045  vtoclgft  3541  sbcralt  3867  csbiebt  3924  csbie2df  4441  dfnfc2  4934  eusvnfb  5392  eusv2i  5393  dfid3  5578  iota2df  6531  riotaeqimp  7392  riota5f  7394  oprabid  7441  axrepndlem1  10587  axrepndlem2  10588  axunnd  10591  axpowndlem4  10595  axregndlem2  10598  axinfndlem1  10600  axinfnd  10601  axacndlem4  10605  axacndlem5  10606  axacnd  10607  bj-elgab  35819  bj-gabima  35820  wl-issetft  36444  riotasv2d  37827  nfxnegd  44151
  Copyright terms: Public domain W3C validator