| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeqd | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfeqd | ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2723 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfeqd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | df-nfc 2879 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 5 | 3, 4 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 6 | 5 | 19.21bi 2190 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 7 | nfeqd.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 8 | df-nfc 2879 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 10 | 9 | 19.21bi 2190 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 11 | 6, 10 | nfbid 1902 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 12 | 2, 11 | nfald 2327 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 13 | 1, 12 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-cleq 2722 df-nfc 2879 |
| This theorem is referenced by: nfeld 2904 nfeq 2906 nfned 3028 cbvexeqsetf 3465 sbcralt 3838 csbiebt 3894 csbie2df 4409 dfnfc2 4896 eusvnfb 5351 eusv2i 5352 dfid3 5539 iota2df 6501 riotaeqimp 7373 riota5f 7375 oprabid 7422 axrepndlem1 10552 axrepndlem2 10553 axunnd 10556 axpowndlem4 10560 axregndlem2 10563 axinfndlem1 10565 axinfnd 10566 axacndlem4 10570 axacndlem5 10571 axacnd 10572 bj-elgab 36934 bj-gabima 36935 wl-issetft 37577 riotasv2d 38957 nfxnegd 45444 |
| Copyright terms: Public domain | W3C validator |