Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeqd | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfeqd | ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfeqd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | df-nfc 2889 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
5 | 3, 4 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
6 | 5 | 19.21bi 2182 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
7 | nfeqd.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
8 | df-nfc 2889 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
9 | 7, 8 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) |
10 | 9 | 19.21bi 2182 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
11 | 6, 10 | nfbid 1905 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
12 | 2, 11 | nfald 2322 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
13 | 1, 12 | nfxfrd 1856 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-cleq 2730 df-nfc 2889 |
This theorem is referenced by: nfeld 2918 nfeq 2920 nfned 3046 vtoclgft 3492 sbcralt 3805 csbiebt 3862 csbie2df 4374 dfnfc2 4863 eusvnfb 5316 eusv2i 5317 dfid3 5492 iota2df 6420 riotaeqimp 7259 riota5f 7261 oprabid 7307 axrepndlem1 10348 axrepndlem2 10349 axunnd 10352 axpowndlem4 10356 axregndlem2 10359 axinfndlem1 10361 axinfnd 10362 axacndlem4 10366 axacndlem5 10367 axacnd 10368 bj-elgab 35127 bj-gabima 35128 riotasv2d 36971 nfxnegd 42981 |
Copyright terms: Public domain | W3C validator |