MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqd Structured version   Visualization version   GIF version

Theorem nfeqd 2955
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeqd (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)

Proof of Theorem nfeqd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2787 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1890 . . 3 𝑦𝜑
3 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
43nfcrd 2939 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
5 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
65nfcrd 2939 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
74, 6nfbid 1882 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝑦𝐵))
82, 7nfald 2308 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝑦𝐵))
91, 8nfxfrd 1833 1 (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wal 1518   = wceq 1520  wnf 1763  wcel 2079  wnfc 2931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-ext 2767
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ex 1760  df-nf 1764  df-cleq 2786  df-nfc 2933
This theorem is referenced by:  nfeld  2956  nfeq  2958  nfned  3086  vtoclgft  3491  vtoclgftOLD  3492  sbcralt  3778  csbiebt  3832  dfnfc2  4757  eusvnfb  5178  eusv2i  5179  dfid3  5341  iota2df  6205  riotaeqimp  6991  riota5f  6993  oprabid  7038  axrepndlem1  9849  axrepndlem2  9850  axunnd  9853  axpowndlem4  9857  axregndlem2  9860  axinfndlem1  9862  axinfnd  9863  axacndlem4  9867  axacndlem5  9868  axacnd  9869  riotasv2d  35574  nfxnegd  41211
  Copyright terms: Public domain W3C validator