![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeqd | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfeqd | ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2733 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfeqd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | df-nfc 2895 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
5 | 3, 4 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
6 | 5 | 19.21bi 2190 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
7 | nfeqd.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
8 | df-nfc 2895 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) |
10 | 9 | 19.21bi 2190 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
11 | 6, 10 | nfbid 1901 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
12 | 2, 11 | nfald 2332 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
13 | 1, 12 | nfxfrd 1852 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-cleq 2732 df-nfc 2895 |
This theorem is referenced by: nfeld 2920 nfeq 2922 nfned 3050 cbvexeqsetf 3503 sbcralt 3894 csbiebt 3951 csbie2df 4466 dfnfc2 4953 eusvnfb 5411 eusv2i 5412 dfid3 5596 iota2df 6560 riotaeqimp 7431 riota5f 7433 oprabid 7480 axrepndlem1 10661 axrepndlem2 10662 axunnd 10665 axpowndlem4 10669 axregndlem2 10672 axinfndlem1 10674 axinfnd 10675 axacndlem4 10679 axacndlem5 10680 axacnd 10681 bj-elgab 36905 bj-gabima 36906 wl-issetft 37536 riotasv2d 38913 nfxnegd 45356 |
Copyright terms: Public domain | W3C validator |