| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeqd | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfeqd | ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2728 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfeqd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | df-nfc 2885 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 5 | 3, 4 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 6 | 5 | 19.21bi 2189 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 7 | nfeqd.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 8 | df-nfc 2885 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 10 | 9 | 19.21bi 2189 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 11 | 6, 10 | nfbid 1902 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 12 | 2, 11 | nfald 2328 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 13 | 1, 12 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-cleq 2727 df-nfc 2885 |
| This theorem is referenced by: nfeld 2910 nfeq 2912 nfned 3034 cbvexeqsetf 3474 sbcralt 3847 csbiebt 3903 csbie2df 4418 dfnfc2 4905 eusvnfb 5363 eusv2i 5364 dfid3 5551 iota2df 6517 riotaeqimp 7386 riota5f 7388 oprabid 7435 axrepndlem1 10604 axrepndlem2 10605 axunnd 10608 axpowndlem4 10612 axregndlem2 10615 axinfndlem1 10617 axinfnd 10618 axacndlem4 10622 axacndlem5 10623 axacnd 10624 bj-elgab 36903 bj-gabima 36904 wl-issetft 37546 riotasv2d 38921 nfxnegd 45416 |
| Copyright terms: Public domain | W3C validator |