MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqd Structured version   Visualization version   GIF version

Theorem nfeqd 2902
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeqd (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)

Proof of Theorem nfeqd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2722 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1914 . . 3 𝑦𝜑
3 nfeqd.1 . . . . . 6 (𝜑𝑥𝐴)
4 df-nfc 2878 . . . . . 6 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
53, 4sylib 218 . . . . 5 (𝜑 → ∀𝑦𝑥 𝑦𝐴)
6519.21bi 2190 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 nfeqd.2 . . . . . 6 (𝜑𝑥𝐵)
8 df-nfc 2878 . . . . . 6 (𝑥𝐵 ↔ ∀𝑦𝑥 𝑦𝐵)
97, 8sylib 218 . . . . 5 (𝜑 → ∀𝑦𝑥 𝑦𝐵)
10919.21bi 2190 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
116, 10nfbid 1902 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝑦𝐵))
122, 11nfald 2327 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝑦𝐵))
131, 12nfxfrd 1854 1 (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-cleq 2721  df-nfc 2878
This theorem is referenced by:  nfeld  2903  nfeq  2905  nfned  3027  cbvexeqsetf  3451  sbcralt  3824  csbiebt  3880  csbie2df  4394  dfnfc2  4880  eusvnfb  5332  eusv2i  5333  dfid3  5517  iota2df  6469  riotaeqimp  7332  riota5f  7334  oprabid  7381  axrepndlem1  10486  axrepndlem2  10487  axunnd  10490  axpowndlem4  10494  axregndlem2  10497  axinfndlem1  10499  axinfnd  10500  axacndlem4  10504  axacndlem5  10505  axacnd  10506  bj-elgab  36923  bj-gabima  36924  wl-issetft  37566  riotasv2d  38946  nfxnegd  45430
  Copyright terms: Public domain W3C validator