MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqd Structured version   Visualization version   GIF version

Theorem nfeqd 2916
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeqd (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)

Proof of Theorem nfeqd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2731 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1918 . . 3 𝑦𝜑
3 nfeqd.1 . . . . . 6 (𝜑𝑥𝐴)
4 df-nfc 2888 . . . . . 6 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
53, 4sylib 217 . . . . 5 (𝜑 → ∀𝑦𝑥 𝑦𝐴)
6519.21bi 2184 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 nfeqd.2 . . . . . 6 (𝜑𝑥𝐵)
8 df-nfc 2888 . . . . . 6 (𝑥𝐵 ↔ ∀𝑦𝑥 𝑦𝐵)
97, 8sylib 217 . . . . 5 (𝜑 → ∀𝑦𝑥 𝑦𝐵)
10919.21bi 2184 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
116, 10nfbid 1906 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝑦𝐵))
122, 11nfald 2326 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝑦𝐵))
131, 12nfxfrd 1857 1 (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-cleq 2730  df-nfc 2888
This theorem is referenced by:  nfeld  2917  nfeq  2919  nfned  3045  vtoclgft  3482  sbcralt  3801  csbiebt  3858  csbie2df  4371  dfnfc2  4860  eusvnfb  5311  eusv2i  5312  dfid3  5483  iota2df  6405  riotaeqimp  7239  riota5f  7241  oprabid  7287  axrepndlem1  10279  axrepndlem2  10280  axunnd  10283  axpowndlem4  10287  axregndlem2  10290  axinfndlem1  10292  axinfnd  10293  axacndlem4  10297  axacndlem5  10298  axacnd  10299  bj-elgab  35054  bj-gabima  35055  riotasv2d  36898  nfxnegd  42871
  Copyright terms: Public domain W3C validator