![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeqd | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfeqd | ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2726 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfeqd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | df-nfc 2886 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
5 | 3, 4 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
6 | 5 | 19.21bi 2183 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
7 | nfeqd.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
8 | df-nfc 2886 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
9 | 7, 8 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) |
10 | 9 | 19.21bi 2183 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
11 | 6, 10 | nfbid 1906 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
12 | 2, 11 | nfald 2322 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
13 | 1, 12 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-cleq 2725 df-nfc 2886 |
This theorem is referenced by: nfeld 2915 nfeq 2917 nfned 3045 vtoclgft 3541 sbcralt 3867 csbiebt 3924 csbie2df 4441 dfnfc2 4934 eusvnfb 5392 eusv2i 5393 dfid3 5578 iota2df 6531 riotaeqimp 7392 riota5f 7394 oprabid 7441 axrepndlem1 10587 axrepndlem2 10588 axunnd 10591 axpowndlem4 10595 axregndlem2 10598 axinfndlem1 10600 axinfnd 10601 axacndlem4 10605 axacndlem5 10606 axacnd 10607 bj-elgab 35819 bj-gabima 35820 wl-issetft 36444 riotasv2d 37827 nfxnegd 44151 |
Copyright terms: Public domain | W3C validator |