| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nabbib | Structured version Visualization version GIF version | ||
| Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025.) |
| Ref | Expression |
|---|---|
| nabbib | ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ¬ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
| 2 | exnal 1828 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 ↔ 𝜓) ↔ ¬ ∀𝑥(𝜑 ↔ 𝜓)) | |
| 3 | xor3 382 | . . . . 5 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
| 4 | 3 | exbii 1849 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 ↔ 𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| 5 | 2, 4 | bitr3i 277 | . . 3 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| 6 | abbib 2800 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | xchnxbir 333 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 {cab 2709 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: suppvalbr 8094 |
| Copyright terms: Public domain | W3C validator |