| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nabbib | Structured version Visualization version GIF version | ||
| Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025.) |
| Ref | Expression |
|---|---|
| nabbib | ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2941 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ¬ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
| 2 | exnal 1827 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 ↔ 𝜓) ↔ ¬ ∀𝑥(𝜑 ↔ 𝜓)) | |
| 3 | xor3 382 | . . . . 5 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
| 4 | 3 | exbii 1848 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 ↔ 𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| 5 | 2, 4 | bitr3i 277 | . . 3 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| 6 | abbib 2811 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | xchnxbir 333 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| 8 | 1, 7 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2714 ≠ wne 2940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-ne 2941 |
| This theorem is referenced by: suppvalbr 8189 |
| Copyright terms: Public domain | W3C validator |