![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nabbib | Structured version Visualization version GIF version |
Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025.) |
Ref | Expression |
---|---|
nabbib | ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2938 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ¬ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
2 | exnal 1822 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 ↔ 𝜓) ↔ ¬ ∀𝑥(𝜑 ↔ 𝜓)) | |
3 | xor3 382 | . . . . 5 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
4 | 3 | exbii 1843 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 ↔ 𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
5 | 2, 4 | bitr3i 277 | . . 3 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
6 | abbib 2800 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) | |
7 | 5, 6 | xchnxbir 333 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
8 | 1, 7 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ {𝑥 ∣ 𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1532 = wceq 1534 ∃wex 1774 {cab 2705 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-ne 2938 |
This theorem is referenced by: suppvalbr 8169 |
Copyright terms: Public domain | W3C validator |