MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nabbib Structured version   Visualization version   GIF version

Theorem nabbib 3031
Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025.)
Assertion
Ref Expression
nabbib ({𝑥𝜑} ≠ {𝑥𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))

Proof of Theorem nabbib
StepHypRef Expression
1 df-ne 2929 . 2 ({𝑥𝜑} ≠ {𝑥𝜓} ↔ ¬ {𝑥𝜑} = {𝑥𝜓})
2 exnal 1828 . . . 4 (∃𝑥 ¬ (𝜑𝜓) ↔ ¬ ∀𝑥(𝜑𝜓))
3 xor3 382 . . . . 5 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))
43exbii 1849 . . . 4 (∃𝑥 ¬ (𝜑𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
52, 4bitr3i 277 . . 3 (¬ ∀𝑥(𝜑𝜓) ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
6 abbib 2800 . . 3 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
75, 6xchnxbir 333 . 2 (¬ {𝑥𝜑} = {𝑥𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
81, 7bitri 275 1 ({𝑥𝜑} ≠ {𝑥𝜓} ↔ ∃𝑥(𝜑 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1539   = wceq 1541  wex 1780  {cab 2709  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-ne 2929
This theorem is referenced by:  suppvalbr  8094
  Copyright terms: Public domain W3C validator