Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnel | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfnel.1 | ⊢ Ⅎ𝑥𝐴 |
nfnel.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfnel | ⊢ Ⅎ𝑥 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3050 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | nfnel.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfnel.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfel 2921 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
5 | 4 | nfn 1860 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 ∈ 𝐵 |
6 | 1, 5 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ∉ wnel 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |