| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfneld | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfneld.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfneld.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfneld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3036 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 2 | nfneld.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfneld.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 4 | 2, 3 | nfeld 2909 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| 5 | 4 | nfnd 1857 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝐴 ∈ 𝐵) |
| 6 | 1, 5 | nfxfrd 1853 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 ∉ wnel 3035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-cleq 2726 df-clel 2808 df-nfc 2884 df-nel 3036 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |