![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfneld | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfneld.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfneld.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfneld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3047 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | nfneld.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfneld.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | 2, 3 | nfeld 2915 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
5 | 4 | nfnd 1862 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝐴 ∈ 𝐵) |
6 | 1, 5 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ∉ wnel 3046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-cleq 2725 df-clel 2811 df-nfc 2886 df-nel 3047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |