![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfra2wOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfra2w 3291 as of 24-Sep-2024. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfra2wOLDOLD | ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2898 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfra1 3276 | . 2 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
3 | 1, 2 | nfralw 3303 | 1 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1778 ∀wral 3056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-10 2130 ax-11 2147 ax-12 2164 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-nf 1779 df-clel 2805 df-nfc 2880 df-ral 3057 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |