MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2wOLDOLD Structured version   Visualization version   GIF version

Theorem nfra2wOLDOLD 3310
Description: Obsolete version of nfra2w 3287 as of 24-Sep-2024. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfra2wOLDOLD 𝑦𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem nfra2wOLDOLD
StepHypRef Expression
1 nfcv 2892 . 2 𝑦𝐴
2 nfra1 3272 . 2 𝑦𝑦𝐵 𝜑
31, 2nfralw 3299 1 𝑦𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1777  wral 3051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-10 2129  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-clel 2802  df-nfc 2877  df-ral 3052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator